K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Hình vẽ:  A B C H

C1:Tam giác ABC vuông tại A có AH là đg cao

Có: \(AH^2=BH\cdot CH\)

Áp dụng bđt \(ab\le\frac{\left(a+b\right)^2}{4}\)

Thì \(AH^2\le\frac{BC^2}{4}\Rightarrowđpcm\)

(AH bằng 1/2 BC khi và chỉ khi BH=CH suy ra AH là đg trung tuyến ...)

C2: Vẽ đg trung tuyến AM

Có: \(AM=\frac{1}{2}BC\)

Suy ra cần CM: \(AH\le AM\)

Thật vậy AH là đường vuông góc xuất phát từ A và AM là đường xiên xuất phát từ A

Suy ra đpcm

Dấu bằng xảy ra khi H trùng M.......

14 tháng 12 2021

Cm: a) Ta có: BA ⊥⊥AC (gt)

                        HD // AB (gt)

=> HD ⊥⊥AC => ˆHDA=900HDA^=900

Ta lại có: AC ⊥⊥AB (gt)

   HE // AC (gt)

=> HE ⊥⊥AB => ˆHEA=900HEA^=900

Xét tứ giác AEHD có: ˆA=ˆAEH=ˆHDA=900A^=AEH^=HDA^=900

=> AEHD là HCN => AH = DE

b) Gọi O là giao điểm của AH và DE

Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => ˆOAD=ˆODAOAD^=ODA^ (1)

Xét t/giác ABC vuông tại A có AM là đường trung tuyến

-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => ˆMAC=ˆCMAC^=C^

Ta có: ˆB+ˆC=900B^+C^=900 (phụ nhau)

  ˆC+ˆHAC=900C^+HAC^=900 (phụ nhau)

=> ˆB=ˆHACB^=HAC^ hay ˆB=ˆOADB^=OAD^ (2) 
Từ (1) và (2) => ˆODA=ˆBODA^=B^

Gọi I là giao điểm của MA và ED

Xét t/giác IAD có: ˆIAD+ˆIDA+ˆAID=1800IAD^+IDA^+AID^=1800 (tổng 3 góc của 1 t/giác)

=> ˆAID=1800−(IAD+ˆIDA)AID^=1800−(IAD+IDA^)

hay ˆAID=1800−(ˆB+ˆC)=1800−900=900AID^=1800−(B^+C^)=1800−900=900

=> AM⊥DEAM⊥DE(Đpcm)

c) (thiếu đề)

1 tháng 3 2022

gfvfvfvfvfvfvfv555

20 tháng 3 2022

a, Xét tam giác ABC và tam giác HBA có 

^B _ chung ; ^BAC = ^HBA = 900

Vậy tam giác ABC ~ tam giác HBA (g.g) 

b, Xét tam giác AHC và tam giác BHA ta có 

^AHC = ^BHA = 900

^HAC = ^HBA ( cùng phụ ^HAB ) 

Vậy tam giác AHC ~ tam giác BHA (g.g) 

\(\dfrac{AH}{BH}=\dfrac{HC}{AH}\Rightarrow AH^2=HC.HB\)

16 tháng 1 2022

vì Δ ABC có AH \(\perp\)BC ( H thuộc BC)nên AH là đường cao của  Δ ABC

=>\(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.5.4=10cm^2\)

16 tháng 1 2022

= 10 c m 2

22 tháng 5 2018

Bạn tham khảo bài này nhé

Câu hỏi của be hat tieu - Toán lớp 7 - Học toán với OnlineMath

1,Cho tam giác ABC vuông tại A với AC = 3cm, BC = 5cm. Vẽ đường cao AK.Chứng minh rằng: a,∆ ABC ~ ∆ KBA và AB2 = BK.BCbTính độ dài AK, BK, CK.c) Phân giác góc BAC cắt BC tại D. Tính đọ dài BD.2,Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai đường chéo AC và BD.a) Chứng minh OA.OD = OB.OC ;b) Cho AB = 5cm, CD = 10cm và AC = 9cm. Hãy tính OA, OC.3: Giải bài toán bằng cách lập phương trình.Một công nhân được...
Đọc tiếp

1,Cho tam giác ABC vuông tại A với AC = 3cm, BC = 5cm. Vẽ đường cao AK.
Chứng minh rằng: a,∆ ABC ~ ∆ KBA và AB2 = BK.BC
bTính độ dài AK, BK, CK.

c) Phân giác góc BAC cắt BC tại D. Tính đọ dài BD.

2,Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai đường chéo AC và BD.
a) Chứng minh OA.OD = OB.OC ;

b) Cho AB = 5cm, CD = 10cm và AC = 9cm. Hãy tính OA, OC.

3: Giải bài toán bằng cách lập phương trình.
Một công nhân được giao làm một số sản phẩm trong một thời gian nhất định. Người đó dự định làm mỗi ngày 45 sản phẩm. Sau khi làm được hai ngày, người đó nghỉ 1 ngày, nên để hoàn thành công việc đúng kế hoạch, mỗi ngày người đó phải làm thêm 5 sản phẩm. Tính số sản phẩm người đó được giao.
Bài 5: Cho tam giác cân AOB (OA = OB). Đường thẳng qua B và song song với đường cao AH của tam giác AOB cắt tia OA ở E.
1) Chứng minh rằng OA2 = OH.OE ;

2) Cho , OA = 5cm. Hãy tính độ dài OE. 
Bài 6: Hình thang vuông ABCD () có hai đường chéo vuông góc với nhau tại I. 
1) Chứng minh ∆ AIB ~ ∆ DAB.

2) ∆ IAB ~ ∆ ICD.
3) Cho biết AB = 4cm, CD = 9cm. Tính độ dài AD, IA, IC và tỉ số diện tích của ∆ IAB và ∆ ICD.

Bài 7: Cho tam giác ABC có ba đường cao AD, BE, CF giao nhau tại H. Chứng minh rằng:
1) ∆ AEB ~ ∆ AFC. 2) ∆ ABC ~ ∆ AEF 3) HD/AD+HE/HE/BE+HF/CF=1

GIÚP ĐƯỢC CÂU NÀO THI GIÚP MÌNH NHÉ CAMON MỌI NGUOI NHIÊU LẮM

0