Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy rằng 2|y+1| luôn luôn lớn hơn 0
Nên suy ra được là : |x-3|+2(y+1)=6
<=>|x-3|+2y=4
<=>|x-3|=4-2y
Có hai trường hợp
1, x-3=4-2y
<=>x-7-2y=0
<=>x-2y=7
2, 3-x=4-2y
<=>x-2y=-1
Đến đây ta thấy hai kết quả khác hoàn toàn nên ko thảo mãn x và y
Bài 1
Hình 1 Tam giác ABC = ADE
Bài 2
Hình 2 Tam giác MRQ = NRS = QPT = OST
ta có \(2\left|y+1\right|=6-\left|x-3\right|\)
Do vế trái là số chẵn và không âm nên vế phải cũng là số chẵn không âm
nên : \(\hept{\begin{cases}\left|x-3\right|\text{ chẵn}\\\left|x-3\right|\le6\end{cases}}\Rightarrow\left|x-3\right|=0,2,4,6\)
\(\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\\orbr{\begin{cases}y=2\\y=-4\end{cases}}\end{cases}}}\)TH1\(\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\text{ hoặc }\hept{\begin{cases}x=3\\y=-4\end{cases}}}}\)
TH2: \(\hept{\begin{cases}\left|x-3\right|=2\\\left|y+1\right|=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}\text{ hoặc }\hept{\begin{cases}x=1\\y=-3\end{cases}}\text{ hoặc }\hept{\begin{cases}x=5\\y=1\end{cases}}\text{ hoặc }\hept{\begin{cases}x=5\\y=-3\end{cases}}}}\)
TH3: \(\hept{\begin{cases}\left|x-3\right|=4\\\left|y+1\right|=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=0\end{cases}\text{ hoặc }\hept{\begin{cases}x=7\\y=-2\end{cases}}\text{ hoặc }\hept{\begin{cases}x=-1\\y=0\end{cases}}\text{ hoặc }\hept{\begin{cases}x=-1\\y=-2\end{cases}}}}\)
TH4: \(\hept{\begin{cases}\left|x-3\right|=6\\\left|y+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=-1\end{cases}\text{ hoặc }\hept{\begin{cases}x=-3\\y=-1\end{cases}}}}\)
3 + | x + 2 | = 2
| x + 2 | = 2 - 3
| x + 2 | = - 1
\(\Rightarrow\)x + 2 = 1 hoặc - 1
Ta xét 2 trường hợp :
TH1 : x + 2 = 1
x = 1 - 2
x = - 1
TH2 : x + 2 = - 1
x = - 1 - 2
x = - 3
Vậy x \(\in\){ - 1 ; - 3 }
\(\frac{2}{1.4.7}+\frac{2}{4.7.10}+...+\frac{2}{58.61.64}\)
\(=\frac{1}{3}.\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{58.61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{7 - 1}{1.4.7}+\frac{10 - 4}{4.7.10}+...+\frac{64 - 58}{58.61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{58.61}-\frac{1}{61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{61.64}\right)=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{3904}\right)=\frac{1}{3}.\frac{975}{3904}=\frac{325}{3904}\)
\(\text{Giải :}\)
\(\frac{2}{1.4.7}+\frac{2}{4.7.10}+...+\frac{2}{58.61.64}=\frac{1}{3}.\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{58.61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{7-1}{1.4.7}+\frac{10-4}{4.7.10}+...+\frac{64-58}{58.61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{58.61}-\frac{1}{61.64}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{61.64}\right)=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{3904}\right)=\frac{1}{3}.\frac{975}{3904}=\frac{325}{3904}\)
\(\text{#Hok tốt!}\)
Gọi số điểm 3 lớp 7A,7B,7C ll là a,b,c(điểm;a,b,c>0)
Ta có \(a:b:c=13:15:21\Rightarrow\dfrac{a}{13}=\dfrac{b}{15}=\dfrac{c}{21}\) và \(a-2b+c=36\left(điểm\right)\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{13}=\dfrac{b}{15}=\dfrac{c}{21}=\dfrac{a-2b+c}{13-2\cdot15+21}=\dfrac{36}{4}=9\\ \Rightarrow\left\{{}\begin{matrix}a=117\\b=135\\c=189\end{matrix}\right.\)
Vậy ...
a: \(\widehat{A}+\widehat{D}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//DC
Ta có :
| 2 + 3x | - | 4x - 3 | = 0
\(\Rightarrow\)| 2 + 3x | = | 4x - 3 |
\(\Rightarrow\)2 + 3x = \(\pm\)( 4x - 3 )
Ta xét 2 trường hợp :
Th 1 :
2 + 3x = 4x - 3
3x - 4x = - 3 - 2
- x = - 5
\(\Rightarrow\)x = 5
Th 2 :
2 + 3x = - ( 4x - 3 )
2 + 3x = - 4x + 3
3x + 4x = 3 - 2
7x = 1
\(\Rightarrow\)x = \(\frac{1}{7}\)
Vậy x \(\in\){ 5 ; \(\frac{1}{7}\)}
\(\left|x+1\right|+\left|x+3\right|+...+\left|x+101\right|=52x\)
Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
Do đó phương trình đã cho tương đương với:
\(\left(x+1\right)+\left(x+3\right)+...+\left(x+101\right)=52x\)
Tổng ở vế trái là tổng các số cách đều, số hạng sau hơn số hạng trước \(2\)đơn vị.
Tổng ở vế trái có số số hạng là: \(\left[\left(x+101\right)-\left(x+1\right)\right]\div2+1=51\)
Phương trình tương đương:
\(51x+\frac{\left(101+1\right).51}{2}=52x\)
\(\Leftrightarrow x=2601\)