Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng ông thức hạ bậc
cos2a=\(\dfrac{1+cos2a}{2}\)
pt<=>1+cos(4x+\(\dfrac{2\Pi}{3}\))-3sin(2x+\(\dfrac{5\Pi}{6}\))+1=0
<=>-\(\dfrac{1}{2}\)cos4x-\(\dfrac{\sqrt{3}}{2}\)sin4x+\(\dfrac{3\sqrt{3}}{2}\)sin2x-\(\dfrac{3}{2}\)cos2x+2=0
<=>(-\(\dfrac{1}{2}\)cos4x+\(\dfrac{3\sqrt{3}}{2}\)sin2x+2)+(-\(\sqrt{3}\)sin2x.cos2x-\(\dfrac{3}{2}\)cos2x)=0
<=>[-\(\dfrac{1}{2}\)(1-2sin22x)+\(\dfrac{3\sqrt{3}}{2}\)sin2x+2)-cos2x.(\(\sqrt{3}\)sin2x+\(\dfrac{3}{2}\))=0
<=>(sin22x+\(\dfrac{3\sqrt{3}}{2}\)sin2x+\(\dfrac{3}{2}\))-cos2x.(\(\sqrt{3}\)sin2x+\(\dfrac{3}{2}\))=0
<=>(sin2x+\(\dfrac{\sqrt{3}}{2}\))(sin2x+\(\sqrt{3}\))-cos2x.(sin2x+\(\dfrac{\sqrt{3}}{2}\))=0
<=>(sin2x+\(\dfrac{\sqrt{3}}{2}\))(sin2x-cos2x+\(\sqrt{3}\))=0
tới đây bạn tự giải nhé
\(sin^4x+cos^4x-2sin2x+\frac{3}{4}sin^22x=0\)
\(\Leftrightarrow1-2sin^2x.cos^2x-2sin2x+\frac{3}{4}sin^22x=0\)
\(\Leftrightarrow1-\frac{1}{2}sin^22x-2sin2x+\frac{3}{4}sin^22x=0\)
\(\Leftrightarrow\frac{1}{4}sin^22x-2sin2x+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}sin2x=4+2\sqrt{3}\left(L\right)\\sin2x=4-2\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=arcsin\left(4-2\sqrt{3}\right)+2k\pi\\2x=\pi-arcsin\left(4-2\sqrt{3}\right)+2k\pi\end{cases}}\) ( k thuộc Z )
<=> ...