Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để T là số nguyên thì 2m-1 ⋮ m-1
=>2(m-1)+1 ⋮ m-1
*Vì 2(m-1) ⋮ m-1 nên:
1 ⋮ m-1
=>m-1∈Ư(1)
=>m-1∈{1;-1}
=>m∈{2;0} (thỏa mãn)
\(\left(2m-1\right)-2\left(m-1\right)⋮\left(m-1\right)\\ 1⋮m-1\\ m-1\in\left\{1;-1\right\}\\ m=0;m=2\)
1) Ta có: |x+3| \(\ge\)0; |2x+y-4| \(\ge\)0
\(\Rightarrow\) |x + 3| + |2x + y - 4| \(\ge\) 0
Dấu = xảy ra khi x+3=0 và 2x+y-4 = 0 \(\Rightarrow\)x=-3; y=10
1) |x + 3| + |2x + y - 4| = 0
\(\Leftrightarrow\hept{\begin{cases}x+3=0\\2x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-6+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=10\end{cases}}\)
ta có : B = 1.2.3 + 2.3.4 + 3.4.5 + ...... + 2016.2017.2018
4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ...... + 2016.2017.2018.2019
4B = 2016.2017.2018.2019
vậy B = 2016.2017.2018.2019/4
Ta có : B = 1.2.3 + 2.3.4 + ...... + 2016.2017.2018
=> 4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ...... + 2016.2017.2018.2019
=> 4B = 2016.2017.2018.2019
=> B = 2016.2017.2018.2019/4
Áp dụng t/c dtsbn:
\(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}=\dfrac{a+b-c+a-b+c-a+b+c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)
\(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2a.2b.2c}{abc}=8\)