Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=1.2.(3-0)+2.3.(4-1)+...+n(n+1)[(n-1)(n+2)]
3A=1.2.3-0.1.2+2.3.4-1.2.3+...n.(n+1)(n+2)-(n-1)n(n+1)
A=n(n+1)(n+2):3
Bài 2:
\(\dfrac{1}{2}:\dfrac{5}{4}=x:\dfrac{10}{3}\Leftrightarrow\dfrac{1}{2}.\dfrac{4}{5}=\dfrac{3}{10}x\Leftrightarrow\dfrac{3}{10}x=\dfrac{2}{5}\Leftrightarrow x=\dfrac{2}{5}:\dfrac{3}{10}=\dfrac{4}{3}\)
Bài 3:
Áp dụng t/c dtsbn:
\(\dfrac{x}{4}=\dfrac{y}{12}=\dfrac{x+y}{4+12}=\dfrac{48}{16}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.4=12\\y=3.12=36\end{matrix}\right.\)
a: Xét tứ giác ABNC có
M là trung điểm của AN và BC
=>ABNC là hình bình hành
=>AB=CN
b: AB+AC=CN+AC>NC=2AM
Bài này có rất nhiều bạn chịu khó tìm là thấy
http://olm.vn/hoi-dap/question/602922.html
Đề bài đúng với mọi n > 0 không nhất thiết phải nguyên hoặc = 2011.
Cách so sanh thường là xét hiệu rồi biện luận >0 hoặc <0.
Đây bn nhé:
Ta có a/3 = b/8= c/5. Áp dụng tính chất dãy tỉ số bằng nhau ta có:
2a+3b-c/2.3+3.8-5 = 2a+3b-c/6+24-5 = 50/25 = 2
=> a/3 = 2 => a=6
=> b/8 = 2 => b=16
=> c/5 = 2 => c=10
Nhìn ngắn vậy thôi chứ ko sai đâu bn
Chúc bn học tốt^^
\(\dfrac{a}{3}\) = \(\dfrac{b}{8}\) = \(\dfrac{c}{5}\) và 2a + 3b - c = 50
=> \(\dfrac{2a}{6}\) = \(\dfrac{3b}{24}\) = \(\dfrac{c}{5}\) và 2a + 3b - c = 50
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2a}{6}\) = \(\dfrac{3b}{24}\) = \(\dfrac{c}{5}\) = \(\dfrac{2a+3b-c}{6+24-5}\) = \(\dfrac{50}{25}\) = 2
Vậy:
\(\dfrac{2a}{6}=2\) => \(2a=2.6=12\) => \(a=12:2=6\)
\(\dfrac{3b}{24}=2\) => \(3b=2.24=48\) => \(b=48:3=16\)
\(\dfrac{c}{5}=2\) => \(c=2.5=10\)