Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh nữ và số học sinh nam có trong lớp 6A là x, y (học sinh)
Ban đầu số học sinh nữ bằng 25% số học sinh nam
\(\dfrac{x}{y}=0,25\)
\(\Rightarrow y=4x\left(1\right)\)
Số học sinh nữ sau khi thay là: \(x-1\)
Số học sinh nam sau khi thay là: \(y+1\)
\(\Rightarrow\dfrac{x-1}{y+1}=0,2\)
\(\Leftrightarrow y-5x+6=0\left(2\right)\)
Từ (1) và (2) ta có hệ: \(\left\{{}\begin{matrix}y=4x\\y-5x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=24\end{matrix}\right.\)
Đáp số:.....
Vì các học sinh lớp 10A1 đều học giỏi ít nhất một trong hai môn Toán hoặc Tiếng Anh nên số học sinh của lớp là: 30 + 25 - 16 = 39 (học sinh).
Chọn C.
Vì các học sinh lớp 10A1 đều học giỏi ít nhất một trong hai môn Toán hoặc Tiếng Anh nên số học sinh của lớp là: 30 + 25 - 16 = 39 (học sinh).
ai có đề thi học sinh giỏi cấp huyện môn toán lớp 7 ko gửi cho mình nha(có đáp án nhé)
mk sẽ tick cho
Đáp án A
Cách gọi ngẫu nhiên 2 học sinh lên bảng: C 40 2
Cách gọi 2 học sinh tên Anh lên bảng: C 4 2
⇒ p = C 4 2 C 40 2 = 1 130
Xác suất để 2 học sinh tên Anh lên bảng là C 4 2 C 40 2 = 1 130
Chọn đáp án A.
Đáp án C
Cách giải:
Gọi ngẫu nhiên hai học sinh lên bảng trong 40 học sinh nên ta có: n Ω = C 40 2 = 780
Gọi biến cố A: “Trong hai bạn được gọi lên bảng, cả hai bạn đều tên là Anh”.
Trong lớp có 4 bạn tên là Anh nên ta có: n A = C 2 2 . C 4 2 = 6
Khi đó ta có xác suất để hai bạn được gọi lên bảng đều tên là Anh là:
P A = n A n Ω = 6 780 = 1 130
Đáp án A
Cách gọi ngẫu nhiên 2 học sinh lên bảng: C 40 2
Cách gọi 2 học sinh tên Anh lên bảng: C 4 2
=> p = C 4 2 C 40 2 = 1 130
không có môn sinh học lớp mẫu giáo nhé bạn