Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(lim\dfrac{\sqrt{n+10}}{5\sqrt{n}-4}\)
\(=lim\dfrac{\sqrt{n+10}}{\sqrt{25n}-4}\)
\(=lim\dfrac{n\sqrt{\dfrac{1}{n}+\dfrac{10}{n}}}{n\sqrt{25}-4}\)
\(=lim\dfrac{\sqrt{\dfrac{1}{n}+\dfrac{10}{n}}}{5+\dfrac{4}{n}}\)
\(=0\)
Đề là \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-5}{x-3}\) hay \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}\) em?
\(\dfrac{f\left(x\right)-5}{x-3}\) thì giới hạn bên dưới ko phải dạng vô định, kết quả là vô cực
\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)
\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)
Do \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-2}{x-3}\) hữu hạn \(\Rightarrow f\left(x\right)-2=0\) có nghiệm \(x=3\)
Hay \(f\left(3\right)-2=0\Rightarrow f\left(3\right)=2\)
\(\Rightarrow I=\lim\limits_{x\rightarrow3}\left(\dfrac{f\left(x\right)-2}{x-3}\right).\dfrac{1}{\sqrt{5f\left(x\right)+6}+1}=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.f\left(3\right)+6}+1}\)
\(=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.2+6}+1}=\dfrac{1}{20}\)
\(a=\lim\limits_{x\rightarrow1^+}\frac{\sqrt{x-1}+\sqrt{x}-1}{\sqrt{\left(x-1\right)\left(x+1\right)}}=\lim\limits_{x\rightarrow1^+}\left(\frac{1}{\sqrt{x+1}}+\frac{x-1}{\left(\sqrt{x}+1\right)\sqrt{\left(x-1\right)\left(x+1\right)}}\right)\)
\(=\lim\limits_{x\rightarrow1^+}\left(\frac{1}{\sqrt{x+1}}+\frac{\sqrt{x-1}}{\left(\sqrt{x}+1\right)\sqrt{x+1}}\right)=\frac{1}{\sqrt{2}}+0=\frac{1}{\sqrt{2}}\)
\(b=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)}{\left(x-1\right)\left(x^{m-1}+x^{m-2}+...+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^{n-1}+x^{n-2}+...+1}{x^{m-1}+x^{m-2}+...+1}=\frac{n}{m}\)
\(c=\lim\limits_{x\rightarrow1}\frac{x-1+x^2-1+...+x^n-1}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}+\lim\limits_{\rightarrow1}\frac{x^2-1}{x-1}+...+\lim\limits_{x\rightarrow1}\frac{x^n-1}{x-1}\)
Áp dụng kết quả câu b ta được:
\(c=\frac{1}{1}+\frac{2}{1}+...+\frac{n}{1}=1+2+..+n=\frac{n\left(n+1\right)}{2}\)
ta có
\(lim\frac{\sqrt{n+4}}{\sqrt{n}+1}=lim\frac{\sqrt{n+4}:\sqrt{n}}{\left(\sqrt{n}+1\right):\sqrt{n}}=lim\frac{\sqrt{1+\frac{4}{n}}}{1+\frac{1}{\sqrt{n}}}=1\)