Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2017}\)
=> \(\frac{x+y}{xy}=\frac{1}{2017}\)
=> 2017(x + y) - xy = 0
=> 2017x + 2017y - xy = 0
=> x(2017 - y) + 2017y = 0
=> x(2017 - y) + 2017y - 4068289 = - 4068289
=> -x(y - 2017) + 2017(y - 2017) = -4068289
=> (2017 - x).(y - 2017) = - 4068289
Ta có - 4068289 = -2017.2017 = -1.4068289
Lập bảng xét các trường học :
2017-x | 1 | - 4068289 | - 1 | 4068289 | 2017 | -2017 |
y-2017 | - 4068289 | 1 | 4068289 | -1 | -2017 | 2017 |
x | 2016 | 4070306 | 2018 | -4066272 | 0 (loại) | 4034 |
y | -4066272 | 2018 | 4070306 | 2016 | 0 (loại) | 4034 |
Vậy các cặp (x;y) thỏa mãn là (2016;-4066272) ; (-4066272;2016) ; (4070306 ; 2018) ; (2018 ; 4070306) ; (4034 ; 4034)
Ta có: 2x + 3y + 5z - 119 = 0
=> 2x + 3y + 5z = 119
\(\frac{x+2}{3}=\frac{y+3}{5}=\frac{z-4}{7}\Leftrightarrow\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}=\frac{2x+4+3y+9+5z-20}{6+15+35}=\frac{119+4+9-20}{56}=\frac{112}{56}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x+2}{3}=2\\\frac{y+3}{5}=2\\\frac{z-4}{7}=2\end{cases}\Rightarrow}\hept{\begin{cases}x+2=6\\y+3=10\\z-4=14\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=7\\z=18\end{cases}}\)
Vậy...
Ta có: \(\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)(1)
\(\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)(2)
\(\left(1\right);\left(2\right)\Rightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)
d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
\(M=5ax^2y^2+\left(-\frac{1}{2}ax^2y^2\right)+7ax^2y^2+\left(-ax^2y^2\right)\)
\(M=\left(5a+\left(-\frac{1}{2}a\right)+7a+\left(-a\right)\right)x^2y^2\)
\(M=-\frac{23}{2}ax^2y^2\)
a) Ta có : \(x^2y^2=\left(xy\right)^2\)luôn dương với mọi x và y ( vì có số mũ chẵn )
Để M < 0 => \(-\frac{23}{2}a\)âm
\(-\frac{23}{2}\) mang dấu ( - ) mà \(-\frac{23}{2}a\)âm => a dương => a > 0
Vậy a > 0 thì M < 0 với mọi x và y
b) Từ ý a) ta có M < 0 khi a > 0
mà a = 2 => a > 0
=> M < 0
=> \(M\ne84\)
=> Không có cặp (x,y) thỏa mãn đề bài
* K chắc nha *
ĐK : 51x \(\ge0\Rightarrow x\ge0\)
Với \(x\ge0\)thì \(x+\frac{1}{1.3}>0;x+\frac{1}{3.5}>0;...;x+\frac{1}{99.101}>0\)
Khi đó : \(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+\left|x+\frac{1}{5.7}\right|+...+\left|x+\frac{1}{99.101}\right|=51x\)
<=> \(x+\frac{1}{1.3}+x+\frac{1}{3.5}+x+\frac{1}{5.7}+....+x+\frac{1}{99.101}=51x\)(50 hạng tử x ở VT)
<=> \(50x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}=51x\)
<=> \(x=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\right)\)
<=> \(x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
<=> \(x=\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{50}{101}\)
Vậy x = 50/101
a) |x-3|+|7-x|=10
x-3+7-x=10
2x-3+7=10
2x-3 = 10-7
2x-3 = 3
2x = 3+3
2x = 6
x = 6:2
x = 3
Câu 2 tớ chưa nghĩ ra