Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=0\Leftrightarrow x^2+y^2+z^2=-2\left(xy+xz+yz\right)\)
Mẫu số nhân ra : \(2\left(x^2+y^2+z^2\right)-2\left(xy+xz+yz\right)=3\left(x^2+y^2+z^2\right)\)
\(A=\dfrac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)
\(\frac{3\left(2x+1\right)}{4}-5-\frac{3x+2}{10}=\frac{2\left(3x-1\right)}{5}\)
\(\Leftrightarrow\frac{15\left(2x+1\right)-100-2\left(3x+2\right)-8\left(3x-1\right)}{20}=0\)
\(\Leftrightarrow30x+15-100-6x-4-24x+8=0\)
\(\Leftrightarrow-81=0\) (ktm)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
Ta có :
A=x2+5y2-2xy+2x-6y+5
=(x2-y2+1-2xy+2x-2y)+(4y2-8y+4)
=(x-y+1)2+(2y-2)2
Ta thấy (x-y+1)2≥0 ∀xy
(2y-2)2≥0 ∀y
⇒(x-y+1)2+(2y-2)2≥0 ∀xy
hay A≥0
Dấu "=" xảy ra ⇔ {x-y+1=0
{2y-2=0
⇔{x-1+1=0
{y=1
⇔{x=0
{y=1
Vậy MinA=0⇔x=0,y=1
\(1,\\ a,=3x^2+2x\\ b,=x^2+13x+40\\ c,=x^3+6x^2+8x^2+48x-x-6=x^3+14x^2+47x-6\\ 2,\\ a,=x^2+4x+4\\ b,=x^2-16y^2\\ c,=4x^2-12xy+9y^2\\ d,=x^3-27\\ 3,\\ a,=3x\left(x+2\right)\\ b,=\left(x+y\right)\left(4x+5\right)\\ c,=6x\left(2x^2-x+3\right)\)
bạn có thể làm rõ ra từng bước giúp mình được ko ạ