K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : |x - 2| ; |x - 5| ; |x - 18| ≥0∀x∈R≥0∀x∈R

=> |x - 2| + |x - 5| + |x - 18|  ≥0∀x∈R≥0∀x∈R

=> D có giá trị nhỏ nhất khi x = 2;5;18

Mà x ko thể đồng thời nhận 3 giá trị

Nên GTNN của D là : 16 khi x = 5   ok nha bạn

x^2/x-1 = x^2-4x+4/x-1 + 4 = (x-2)^1/x-1 + 4 >= 4

Dấu "=" xảy ra <=> x-2 = 0 <=> x = 2 (tm)

Vậy GTNN của x^2/x-1 = 4 <=> x= 2

k mk nha

28 tháng 6 2023

\(a,A=0,2\left(5x-1\right)-\dfrac{1}{2}\left(\dfrac{2}{3}x+4\right)+\dfrac{2}{3}\left(3-x\right)\)

\(=x-0,2-\dfrac{1}{3}x-2+2-\dfrac{2}{3}x\)

\(=\left(-0,2-2+2\right)+\left(x-\dfrac{1}{3}x-\dfrac{2}{3}x\right)\)

\(=-0,2\)

\(b,B=\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x^3-8y^3+10\right)\)

\(=x^3-8y^3-x^3+8y^3-10\)

\(=-10\)

\(c,C=4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)-4x\)

\(=4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)-4x\)

\(=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\)

\(=13\)

 

28 tháng 6 2023

a) \(A=0,2\left(5x-1\right)-\dfrac{1}{2}\left(\dfrac{2}{3}x+4\right)+\dfrac{2}{3}\left(3-x\right)\)

\(A=x-\dfrac{1}{5}-\dfrac{1}{3}x-2+2-\dfrac{2}{3}x\)

\(A=\left(x-\dfrac{1}{3}x-\dfrac{2}{3}x\right)-\left(\dfrac{1}{5}+2-2\right)\)

\(A=-\dfrac{1}{5}\)

Vậy: ...

b) \(B=\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x^3-8y^3+10\right)\)

\(B=\left[x^3-\left(2y\right)^3\right]-\left[x^3-\left(2y\right)^3\right]-10\)

\(B=-10\)

Vậy: ...

c) \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x+1\right)\left(x-1\right)-4x\)

\(=4\left(x^2+2x+4\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)-4x\)

\(=4x^2+8x+4+4x^2-4x+1-8x^2+8-4x\)

\(=\left(4x^2+4x^2-8x^2\right)+\left(8x-4x-4x\right)+\left(4+1+8\right)\)

\(=13\)

Vậy:...

15 tháng 10 2021

Câu 1: C

Câu 2: D

Câu 3: B

15 tháng 12 2021

Bài 4:

\(P=\dfrac{4x^2-2x+7}{2x-1}=\dfrac{2x\left(2x-1\right)+7}{2x-1}=2x+\dfrac{7}{2x-1}\in Z\\ \Leftrightarrow2x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-3;0;1;4\right\}\\ Q=\dfrac{4x^2-2x+3}{2x-1}=\dfrac{2x\left(2x-1\right)+3}{2x-1}=2x+\dfrac{3}{2x-1}\in Z\\ \Leftrightarrow2x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-1;0;1;2\right\}\)

Bài 5:

\(M=\dfrac{\left(5x-1\right)\left(5x+1\right)}{1-5x}+\dfrac{\left(y-3\right)\left(5x+1\right)}{y-3}=-\left(5x+1\right)+5x+1=0\)

Bài 6:

\(VT=\dfrac{a\left(a+3b\right)}{\left(a+3b\right)\left(a-3b\right)}-\dfrac{\left(2a+b\right)\left(a-3b\right)}{\left(a-3b\right)^2}=\dfrac{a}{a-3b}-\dfrac{2a+b}{a-3b}=\dfrac{-a-b}{a-3b}\)

\(VP=\dfrac{\left(a+b\right)\left(a+c\right)}{\left(a+c\right)\left(3b-a\right)}=\dfrac{a+b}{3b-a}=\dfrac{-a-b}{a-3b}\)

Vậy ta đc đpcm

17 tháng 12 2022

11)\(\dfrac{3x+1}{x-5}+\dfrac{2x}{x-5}=\dfrac{3x+2x+1}{x-5}=\dfrac{5x+1}{x-5}\)

12)\(\dfrac{4-x^2}{x-3}+\dfrac{2}{x^2-9}=\dfrac{4-x^2}{x-3}+\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(4-x^2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2+\left(2-x\right)\left(2+x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

13)

\(\dfrac{3}{4x-2}+\dfrac{2x}{4x^2-1}=\dfrac{3}{2\left(2x-1\right)}+\dfrac{2x}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{3\left(2x+1\right)}{2\left(2x-1\right)\left(2x+1\right)}+\dfrac{2.2x}{2\left(2x-1\right)\left(2x+1\right)}=\dfrac{6x+3+4x}{2\left(2x-1\right)\left(2x+1\right)}=\dfrac{10x+3}{2\left(2x-1\right)\left(2x+1\right)}\)

14)

\(\dfrac{2x+1}{2x-4}+\dfrac{5}{x^2-4}=\dfrac{2x+1}{2\left(x-2\right)}+\dfrac{5}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(2x+1\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\dfrac{5.2}{2\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+5x+12}{2\left(x-2\right)\left(x+2\right)}\)

 

16 tháng 10 2021

\(P=\left[\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right]\cdot\dfrac{x^2-x-2}{x^2}\\ P=\dfrac{-x\left(x-2\right)^2-4x^2}{2\left(x^2+4\right)\left(2-x\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\\ P=\dfrac{x^3+4x}{2\left(x^2+4\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\\ P=\dfrac{x\left(x^2+4\right)\left(x+1\right)}{2x^2\left(x^2+4\right)}=\dfrac{x+1}{2x}\)

b: Ta có: \(\left(x+y\right)^2-x^2+4xy-4y^2\)

\(=\left(x+y\right)^2-\left(x-2y\right)^2\)

\(=\left(x+y-x+2y\right)\left(x+y+x-2y\right)\)

\(=3y\cdot\left(2x-y\right)\)

c: Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=2y^3+6x^2y\)

\(=2y\left(3x^2+y^2\right)\)