K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D F K H E

a,\(\Delta AHB\&\Delta AEC\)có:  \(\widehat{A}chung,\widehat{AEC}=\widehat{AHB}=90^o\)

\(\Rightarrow\Delta AHB\infty\Delta AEC\left(g.g\right)\Rightarrow\frac{AH}{AE}=\frac{AB}{AC}\Rightarrow AB.AE=AH.AC\)

b,\(\Delta AKD\&\DeltaÀFC\)CÓ: \(\widehat{A}chung,\widehat{AFC}=\widehat{AKD}=90^o\)

\(\Rightarrow\Delta AKD\infty\DeltaÀFC\left(g.g\right)\Rightarrow\frac{AK}{AF}=\frac{AD}{AC}\Rightarrow AD.AF=AK.AC\)

c, Vì ABCD là hbh => AB=DC

   --------------------- => AB//CD => GÓC BAC=ACD (SO LE TRONG)

Xét tam giác ABH  và tam giác CDK có:

Tam giác ABH vuông tại H

----------- CDK ------------- K

cạnh huyền AB=CD

góc nhọn BAC=ACD

=> tam giác ABH = tam giác CDK

=> AH=KC

ta có: AC = AH + HC

Mà: AH=KC

=> AC = AH+HK+AH

=> AC = AH + AK

Ta có: AB.AE+AD.AF = AH.AC+AK.AC = AC.(AH+AK) = AC.AC = AC2 

9 tháng 3 2021

a/ Xét tg vuông AHD và tg vuông AKB có 

\(\widehat{BAK}+\widehat{ABC}=90^o\)

\(\widehat{DAH}+\widehat{ADC}=90^o\)

Mà \(\widehat{ABC}=\widehat{ADC}\) (Hai góc đối của hbh)

\(\Rightarrow\widehat{DAH}=\widehat{BAK}\)

=> tg AHD đồng dạng với tg AKB \(\Rightarrow\frac{AH}{AK}=\frac{DA}{AB}\) mà AB = DC (hai cạnh đối của hbh) \(\Rightarrow\frac{AH}{AK}=\frac{DA}{DC}\left(dpcm\right)\)

b/ Ta có K và H đều nhìn AC dưới 1 góc 90 độ

=> Tứ giác AKCH là tứ giác nội tiếp đường tròn đường kính AC 

=> sđ \(\widehat{AKH}\) = sđ \(\widehat{ACH}\) = 1/2 sđ cung AH (Góc nội tiếp đường tròn) \(\Rightarrow\widehat{AKH}=\widehat{ACH}\left(dpcm\right)\)

1: Xet ΔABH và ΔHDK có

góc ABH=góc HDK

góc AHB=góc HKD

=>ΔABH đồng dạng với ΔHDK

=>AB/HD=BH/DK=BN/DM

Xet ΔABN và ΔHDM có

góc ABN=góc HDM

AB/HD=BN/DM

=>ΔABN đồng dạng vơi ΔHDM

b: ΔOBN đồng dạng với ΔKDH

=>OB/KD=BN/DH

=>OB/BN=KD/DH

=>OB/2BN=DM/DH

=>OB/BH=DM/DH

Xét ΔOBH và ΔMDH có

góc OBH=góc MDH

OB/BH=MD/DH

=>ΔOBH đồng dạng với ΔMDH

=>góc OHB=góc DHM

=>O,H,M thẳng hàng

 

a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có

góc EAC chung

=>ΔAEC đồng dạng với ΔAHB

=>AE/AH=AC/AB

=>AE*AB=AC*AH

b: Xét ΔCBH vuông tại H và ΔACF vuông tại F có

góc BCH=góc CAF

=>ΔCBH đồng dạng với ΔACF

 

26 tháng 3 2019

a. hai tg ABG và tg ACE vuông tại G và E có góc GAB chung nên đồng dạng(gg) 
b. Vì tg AEC và ABG đồng dạng --> AB/AC = AG/AE -> AB.AE = AC.AG(1) 
Vì hai tg vuông AFC và CGB có góc CAF = góc BCG (slt) --> tg AFC và tg CGB đồng dạng --> AF/CG = AC/BC --> AF.BC = AC.CG thay BC = AD --> AF.AD = AC.CG (2). 
Cộng (1) và (2) vế theo vế --> AB.AE + AD.AF = AC.AG + AC.CG = AC(AG+GC) = AC.AC = AC^2 
Vậy AB.AE + AD.AF = AC^2.