Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2-6x+9-x^2+4=1\)
=>-6x=-12
hay x=2
Ta có:
(2 - 3x)(x + 8) = (3x - 2)(3 - 5x)
⇔ (2 - 3x)(x + 8) - (3x - 2)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8) + (2 - 3x)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8 + 3 - 5x) = 0
⇔ (2 - 3x)(11 - 4x) = 0
⇔ 2 - 3x = 0 hay 11 - 4x = 0
⇔ 2 = 3x hay 11 = 4x
⇔ x = \(\dfrac{2}{3}\) hay x = \(\dfrac{11}{4}\)
Vậy tập nghiệm của pt S = \(\left\{\dfrac{2}{3};\dfrac{11}{4}\right\}\)
<=> (2-3x ) (x+8) + (2-3x ) (3-5x)=0
<=> (2-3x ) ( x+8 + 3-5x ) =0
<=> (2-3x ) ( 11 - 4x ) = 0
=> 2-3x =0 hoặc 11-4x =0
3x = 2 4x =11
x = 2/3 x = 11/4
2x^2+y^2+9=6x+2xy
=>x^2+y^2+9-6x-2xy+x^2=0
=>(x-3)^2+(y-x)^2=0
=>x=y=3
=>A=3^4039-3^4039+1/9*3*3=1
Ta có: \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=x+2-x+5\)
\(\Leftrightarrow18x-2=7\)
\(\Leftrightarrow18x=9\)
hay \(x=\dfrac{1}{2}\)
\(x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x-5=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=4\\x=5\end{cases}}\)
Vậy tập nghiện của PT là S = { 4 ; 5 }
x2 - 9x + 20 = 0
<=> x2 - 4x - 5x + 20 = 0
<=> x( x - 4 ) - 5( x - 4 ) = 0
<=> ( x - 4 )( x - 5 ) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
Vậy phương trình có tập nghiệm S = { 4 ; 5 }