K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AID=1/2(sđ cung AD+sđ cung CB)

=1/2(sđ cung MD+sđ cung MC)

=1/2*sđ cung CD

=góc DAI

=>ΔAID cân tại D

b: góc PAI=góc PDI(1/2sđ cung MC=1/2sđ cung CB)

=>PDAI nội tiếp

10 tháng 6 2019

Em không vẽ được hình, xin thông cảm

a, Ta có góc EAN=  cungEN=cung EC+ cung EN

Mà cung EC= cung EB(E là điểm chính giữa cung BC)

=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)

=> tam giác AEN đồng dạng tam giác FED

Vậy tam giác AEN đồng dạng tam giác FED

b,Ta có EC=EB=EM

Tam giác EMC cân tại E => EMC=ECM

 MÀ EMC+AME=180, ECM+ABE=180

=> AME = ABE

=> tam giác ABE= tam giác AME

=> AB=AM => tam giác ABM cân tại A

Mà AE là phân giác => AE vuông góc BM

CMTT => AC vuông góc EN

MÀ AC giao BM tại M

=> M là trực tâm tam giác AEN

Vậy M là trực tâm tam giác AEN

c,  Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH

Vì M là trực tâm của tam giác AEN

=> \(EN\perp AN\)

Mà \(OI\perp AN\)(vì I là trung điểm của AC)

=> \(EN//OI\)

MÀ O là trung điểm của EH

=> I là trung điểm của MH (đường trung bình trong tam giác )

=> tứ giác AMNH là hình bình hành 

=> AH=MN

Mà MN=NC

=> AH=NC

=> cung AH= cung NC

=> cung AH + cung KC= cung KN

Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )

NBK là góc nội tiếp chắn cung KN

=> gócKMC=gócKBN

Hay gócKMC=gócKBM

=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)

Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK

10 tháng 6 2019

Anh Khang nè,e cung cấp hình nha:3

1 tháng 7 2019

Tự vẽ hình nhé!

a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)

\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược

\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)

b, Gọi C là trung điểm dây AB ta có C cố định

(d) không qua O nên \(OC\perp AB\)

            \(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)

\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM

\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn

Mà O và C cố định

Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)

c, Tứ giác MNOP là hình vuông 

\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\)Tam giác OMN vuông cân tại N  \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)

\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)

d, từ nghĩ đã...

\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)

1 tháng 7 2019

cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó

d, Làm tiếp:

Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'

OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))

\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)

\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\)     ;   \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)

Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)

\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP 

Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)

Mặt khác :  O , I cùng thuộc nửa mặt phẳng bờ d

Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R

25 tháng 5 2018

Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá

25 tháng 5 2018

HD

image006

Câu 1.

Tự CM.

Câu 2:

Kẻ AO cắt đường tròn tại F

Để ý góc ADE=góc EBC=góc AFC

Mà góc CAF+góc FAC =90°

⇒góc ADE+góc FAC =90°hay AF ⊥ DE.

Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.

Câu 3:

Gọi giao CQ và BP là O’

Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)

⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’

⇒ các ΔBQN,  ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C

⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0
4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề