K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2021

Dùng CT: \(sin\left(a+b\right)=sina.cosb+cosa.sinb\)

\(y=\sqrt{3}sin2x-cos2x\)

\(=2\left(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right)\)

\(=2\left(cos\dfrac{\pi}{6}.sin2x-sin\dfrac{\pi}{6}.cos2x\right)\)

\(=2sin\left(2x-\dfrac{\pi}{6}\right)\)

27 tháng 10 2021

ko đc chép mạng bạn nhé.

15 tháng 6 2021

Có: `y=a sinx +b cosx`

`=> -\sqrt(a^2+b^2) <= y <= \sqrt(a^2+b^2)`

15 tháng 6 2021

- Nhớ sương sương vậy thôi chứ câu từ đầy đủ thế nào thì bạn tự tra mạng nkaaaa.

20 tháng 7 2021

- Đề thiếu hã ?

20 tháng 7 2021

23 tháng 6 2021

công thứ: phụ chéo

 

NV
23 tháng 6 2021

Sử dụng công thức: \(cos\alpha=sin\left(90^0-\alpha\right)\)

NV
29 tháng 2 2020

\(1=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{2x}=\lim\limits_{x\rightarrow0}\frac{x}{2x}.\frac{1}{\sqrt{x+4}+2}=\lim\limits_{x\rightarrow0}\frac{1}{2\left(\sqrt{x+4}+2\right)}=\frac{1}{2\left(\sqrt{4}+2\right)}\)

\(2=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}.\frac{1}{\sqrt{x+3}+2}=\lim\limits_{x\rightarrow1}\frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{1+3}+2}\)

\(3=\lim\limits_{x\rightarrow3}\frac{\sqrt{2x+3}-x}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3-x^2}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}\)

\(=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(3-x\right)}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}=\lim\limits_{x\rightarrow3}\frac{x+1}{\left(1-x\right)\left(\sqrt{2x+3}+x\right)}=\frac{3+1}{\left(1-3\right)\left(\sqrt{9}+3\right)}\)

\(4=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{\left(x+1\right)^2\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{2x-1}{\left(x+1\right)^2}=\frac{4-1}{\left(2+1\right)^2}\)

P/s: lần sau bạn sử dụng tính năng gõ công thức ở kí hiệu \(\sum\) góc trên cùng bên trái khung soạn thảo ấy, khó nhìn đề quá chẳng muốn làm

29 tháng 2 2020

cảm ơn bạn nhiều nha !

mình sẽ rút kinh nghiệm.

20 tháng 8 2018

\(-1\le cosx\le1\) nên \(0\le cosx+1\le2\)