K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

Gọi O là giao điểm của AC, BD.

Gọi G là giao điểm SO và AM.

Qua G vẽ PQ // BD (P thuộc SB, Q thuộc SD), (APMQ) là mp(P) cần tìm.

G là trọng tâm tam giác SBD →\(\frac{SG}{SO}=\frac{2}{3}\)

PQ // BD → \(\frac{SP}{SB}=\frac{SQ}{SD}=\frac{SG}{SO}=\frac{2}{3}\)

\(V_{S.APMQ}=V_{S.APM}+V_{S.AQM}\)

\(=\frac{SP}{SB}\cdot\frac{SM}{SC}\cdot V_{S.ABC}+\frac{SQ}{SD}\cdot\frac{SM}{SC}\cdot V_{S.ACD}\)

\(=\frac{1}{3}V_{S.ABC}+\frac{1}{3}V_{S.ACD}=\frac{2}{3}V_{S.ABC}=\frac{2}{3}\cdot\frac{1}{2}\cdot V_{S.ABCD}=\frac{1}{3}V_{S.ABCD}\)

28 tháng 12 2016

dạ e cám ơn hiha

10 tháng 1 2018

2 tháng 8 2023

Để tính thể tích SAPMQ, ta cần tìm độ dài đoạn PM và đoạn MQ. Gọi E là trung điểm của BD. Ta có ME song song với AM và ME = 1/2 BD = 1/2 a. Vì (∆) song song với BD nên góc AME = góc ABD = 45 độ. Vì SA vuông góc với ABCD nên góc SAM = 90 độ. Vì SA = a√3 và góc SAM = 90 độ nên tam giác SAM là tam giác vuông cân tại A. Do đó, góc ASM = 45 độ. Vì góc ASM = góc AME = 45 độ nên tam giác ASM và tam giác AME đồng dạng. Vậy, ta có: AM/AS = AE/AM AM^2 = AS * AE AM^2 = (a√3) * (1/2 a) AM^2 = a^2 * √3 / 2 AM = a√3 / √2 AM = a√6 / 2 Ta có ME = 1/2 a Vậy, PM = AM - ME = (a√6 / 2) - (1/2 a) = (a√6 - a) / 2 Tương tự, ta có MQ = AM + ME = (a√6 / 2) + (1/2 a) = (a√6 + a) / 2 Vậy, thể tích SAPMQ = SABC * PM = a^2 * (a√6 - a) / 2 = a^3√6 / 2 - a^3 / 2

5 tháng 4 2018

14 tháng 8 2019

Đáp án D

 

8 tháng 1 2017

29 tháng 8 2017

16 tháng 1 2017

Đáp án D

 

18 tháng 12 2019

23 tháng 10 2019

Đáp án B

Hướng dẫn giải:

Gọi H là tâm của đáy khi đó  S H ⊥ ( A B C D )

Lại có  S H = H A   tan 60 o = a 6 2

V S . A B C D = 1 3 S H . S A B C D = a 3 6 6

Mặt khác, gọi  G = S H ∩ A M

⇒ G là trọng tâm của tam giác SAC.

Do đó  S G S H = 2 3

Qua G dựng đường thẳng song song với BD cắt SB, SD lần lượt tại P và Q

Khi đó  V S . A B M V S . A B C = S P S B . S M S C = 1 3

từ đó suy ra  V S . A P M Q V S . A B C D = 1 3

Do vậy  V S . A P M Q = a 3 6 18

⇒ 18 V a 3 = 6