Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính thể tích SAPMQ, ta cần tìm độ dài đoạn PM và đoạn MQ. Gọi E là trung điểm của BD. Ta có ME song song với AM và ME = 1/2 BD = 1/2 a. Vì (∆) song song với BD nên góc AME = góc ABD = 45 độ. Vì SA vuông góc với ABCD nên góc SAM = 90 độ. Vì SA = a√3 và góc SAM = 90 độ nên tam giác SAM là tam giác vuông cân tại A. Do đó, góc ASM = 45 độ. Vì góc ASM = góc AME = 45 độ nên tam giác ASM và tam giác AME đồng dạng. Vậy, ta có: AM/AS = AE/AM AM^2 = AS * AE AM^2 = (a√3) * (1/2 a) AM^2 = a^2 * √3 / 2 AM = a√3 / √2 AM = a√6 / 2 Ta có ME = 1/2 a Vậy, PM = AM - ME = (a√6 / 2) - (1/2 a) = (a√6 - a) / 2 Tương tự, ta có MQ = AM + ME = (a√6 / 2) + (1/2 a) = (a√6 + a) / 2 Vậy, thể tích SAPMQ = SABC * PM = a^2 * (a√6 - a) / 2 = a^3√6 / 2 - a^3 / 2
Đáp án B
Hướng dẫn giải:
Gọi H là tâm của đáy khi đó S H ⊥ ( A B C D )
Lại có S H = H A tan 60 o = a 6 2
V S . A B C D = 1 3 S H . S A B C D = a 3 6 6
Mặt khác, gọi G = S H ∩ A M
⇒ G là trọng tâm của tam giác SAC.
Do đó S G S H = 2 3
Qua G dựng đường thẳng song song với BD cắt SB, SD lần lượt tại P và Q
Khi đó V S . A B M V S . A B C = S P S B . S M S C = 1 3
từ đó suy ra V S . A P M Q V S . A B C D = 1 3
Do vậy V S . A P M Q = a 3 6 18
⇒ 18 V a 3 = 6
Gọi O là giao điểm của AC, BD.
Gọi G là giao điểm SO và AM.
Qua G vẽ PQ // BD (P thuộc SB, Q thuộc SD), (APMQ) là mp(P) cần tìm.
G là trọng tâm tam giác SBD →\(\frac{SG}{SO}=\frac{2}{3}\)
PQ // BD → \(\frac{SP}{SB}=\frac{SQ}{SD}=\frac{SG}{SO}=\frac{2}{3}\)
\(V_{S.APMQ}=V_{S.APM}+V_{S.AQM}\)
\(=\frac{SP}{SB}\cdot\frac{SM}{SC}\cdot V_{S.ABC}+\frac{SQ}{SD}\cdot\frac{SM}{SC}\cdot V_{S.ACD}\)
\(=\frac{1}{3}V_{S.ABC}+\frac{1}{3}V_{S.ACD}=\frac{2}{3}V_{S.ABC}=\frac{2}{3}\cdot\frac{1}{2}\cdot V_{S.ABCD}=\frac{1}{3}V_{S.ABCD}\)
dạ e cám ơn