K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

Dùng bất đẳng thức tam giác về giá trị tuyệt đối ý cậu

|A| + |B| lớn hơn hoặc bằng |A+B|

Dấu = xảy ra khi và chỉ khi A=0

                                        B=0

                                        A>0

                                        B>0

                                        A<0

                                        B<0

Áp dụng công thức này vào mà làm nhé. Good luck!

                         

29 tháng 10 2016

GTNN A= 2 khi x=2016

16 tháng 11 2016

GTLN của biểu thức khi mẫu số nhỏ nhất mà mẫu số

/x - 1015/ + 2 nhỏ nhất là 2 vì / x-2015/ > hoặc = 0

/x- 2015/ =0 khi x= 2015 thi biểu thức trên có GTLN = 2016/2 = 1008

16 tháng 11 2016

1008

8 tháng 12 2016

Đặt A = |x-2015|+|2016-x| +|x-2017|
=> A = |x-2015|+|x-2016| +|2017-x|

Ta có |x-2015| \(\ge\)x - 2015 (với mọi x)

         |x-2016| \(\ge\)0 (với mọi x)

         |2017-x| \(\ge\) 2017 - x (với mọi x)
=> |x-2015|+|x-2016| +|2017-x| \(\ge\)(x - 2015) + 0 + (2017 - x) (với mọi x)
=> A \(\ge\)2 (với mọi x)
=> A đạt GTNN là 2 khi

 \(\hept{\begin{cases}\text{|x-2015|\ge0}\\\text{|x-2016|=0}\\\text{|2017-x|\ge0}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2015\ge0\\x-2016=0\\2017-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\Rightarrow x=2016}\)
Vậy GTNN của A là 2 tại x = 2016

7 tháng 3 2018

BN làm đúng rồi đó

13 tháng 7 2015

GTNN = 1 tại x = 2016 hoặc x = 2015

13 tháng 7 2015

l x - 2016 l + l x - 2015l = l 2016 - x l + l x - 2015l \(\ge\) l 2016 - x + x - 2015l = 1 

Vậy GTNN là 1 khi 2015< x < 2016 ( nhở hơn  = ) 

20 tháng 5 2021

 \(|x-2015|+|x-2016|+|x-2017|< =>\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)

=>\(\left|x-2105\right|+\left|2017-x\right|+\left|x-2016\right|\ge\left|x-2015+2017-x\right|+0=2+0=2\)

dấu '=' xảy ra <=>\(\left\{{}\begin{matrix}x=2016\\2015\le x\le2017\end{matrix}\right.\)<=>x=2016

vậy  giá trị nhỏ nhất của P=2 khi x=2016

 

 

20 tháng 5 2021

P = |x - 2015| + |x - 2016| + |x - 2017|
<=> P = |x - 2015| + |2017 - x| + |x - 2016|
Áp dụng BĐT |a| + | b| lớn hơn hoặc bằng |a + b| có :
|x - 2015| + |2017-x| + |x - 2016| lớn hơn hoặc bằng |x - 2015 + 2017 - x| + |x - 2016| = 2 + |x + 2016|
Dấu "=" xảy ra khi 
(x - 2015) (2017 - x) lớn hơn hoặc bằng 0
và |x - 2016| = 0 => x = 2016
Có : x - 2015 lớn hơn hoặc bằng 0 và 2017 - x lớn hơn hoặc bằng 0 
=> 2015 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 2017 
-> x = 2016 (tm)
Vậy GTLN của P = 2 <=> x = 2016

28 tháng 10 2016

Ta có:

\(A=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)

\(=\left|x-2015\right|+\left|x-2016\right|+\left|2017-x\right|\)

\(\ge x-2015+0+2017-x=2\)

Dấu = khi \(\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\)\(\Rightarrow x=2016\)

Vậy MinA=2 khi x=2016

 

28 tháng 10 2016

x=2016

 

30 tháng 4 2016

áp dụng hằng bất đẳng thức |a|-|b| <= |a-b|

ta có
|x+2015|-|x+2016| <= |x+2015 - x- 2016|

hay |x+2015|-|x+2016| <= 1

vậy giá trị lớn nhất là 1

30 tháng 4 2016

Ta có đề rồi nên k.o copy hehe

=> (|x| + |2015|) - (|x| + 2016|)

= |0| + |-1|

= |-1|

= 1.

1 tháng 9 2016

GTNN | x - 2015| = 0 

=> x = 2015 

=> | 2015 - 2016 | = 1 

=> min A = 0 + 1 = 1 

GTNN | x - 2016 |= 0 

=> x = 2016

=> | 2016 - 2015 | = 1

=> min A = 1 + 0 = 0 

Vậy GTNN của A = 1 

tíc mình nha !

1 tháng 9 2016

\(A=\left|x-2015\right|+\left|x-2016\right|\)

Có: \(\left|x-2015\right|\ge0;\left|x-2016\right|\ge0\)

\(\left|x-2015\right|+\left|x-2016\right|\ge0\)

Trường hợp này dấu = không thể xảy ra, nên:

\(\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}\)

Thay: \(x=2015\) thì \(A=\left|2015-2015\right|+\left|2015-2016\right|=1\) 

Thay: \(x=2016\) thì \(A=\left|2016-2015\right|+\left|2016-2016\right|=1\)

Ta thấy: \(x=2015\) và \(x=2016\) đều nhận giá trị là 1.

Vậy: \(Min_A=1\) tại \(x=2015\) hoặc \(x=2016\)