Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x}{2}-\frac{1}{3}\right):\frac{1}{2}=\left(\frac{1}{4}-\frac{3}{2}\right):\left(1-\frac{5}{4}\right)\)
\(\left(\frac{3x-2}{6}\right):\frac{1}{2}=\left(-\frac{5}{4}\right):\left(-\frac{1}{4}\right)\)
\(\left(\frac{3x-2}{6}\right):\frac{1}{2}=5\)
\(\left(\frac{3x-2}{6}\right)=\frac{5}{2}\)
Áp dụng công thức \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\) ta đc:
\(\Rightarrow2\left(3x-2\right)=30\)
\(\Rightarrow\left(3x-2\right)=15\)
\(\Rightarrow3x=17\)
\(\Rightarrow x=\frac{17}{3}\)
\(\left(\frac{x}{2}-\frac{1}{3}\right):\frac{1}{2}=\left(\frac{1}{4}-\frac{3}{2}\right):\left(\frac{1-5}{4}\right)\)
\(\left(\frac{x}{2}-\frac{1}{3}\right):\frac{1}{2}=\left(\frac{1}{4}-\frac{6}{4}\right):1\)
\(\left(\frac{x}{2}-\frac{1}{3}\right):\frac{1}{2}=-\frac{5}{4}:1\)
\(\left(\frac{x}{2}-\frac{1}{3}\right):\frac{1}{2}=-\frac{5}{4}\)
\(\frac{x}{2}-\frac{1}{3}=-\frac{5}{4}\times\frac{1}{2}\)
\(\frac{x}{2}-\frac{1}{3}=-\frac{5}{8}\)
\(\frac{x}{2}=-\frac{5}{8}+\frac{1}{3}\)
\(\frac{x}{2}=-\frac{7}{24}\)
\(x\times24=-14\)
\(x=-\frac{7}{12}\)
a) \(\dfrac{1}{2}-\left(x+\dfrac{1}{3}\right)=\dfrac{5}{6}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{-1}{3}\)
\(\Rightarrow x=\dfrac{-1}{3}-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{-2}{3}\)
b)\(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)
\(\Rightarrow x+\dfrac{1}{2}=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Rightarrow x+\dfrac{1}{2}=\dfrac{-1}{20}\)
\(\Rightarrow x=\dfrac{-1}{20}-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{-11}{20}\)
c) \(\dfrac{3}{35}-\left(\dfrac{3}{5}+x\right)=\dfrac{2}{7}\)
\(\Rightarrow\dfrac{3}{5}+x=\dfrac{3}{35}-\dfrac{2}{7}\)
\(\Rightarrow\dfrac{3}{5}+x=\dfrac{-1}{5}\)
\(\Rightarrow x=\dfrac{-1}{5}-\dfrac{3}{5}\)
\(\Rightarrow x=\dfrac{-4}{5}\)
d)\(\dfrac{2}{3}.x=\dfrac{4}{27}\)
\(\Rightarrow x=\dfrac{4}{27}:\dfrac{2}{3}\)
\(\Rightarrow x=\dfrac{2}{9}\)
e) \(\dfrac{-3}{5}.x=\dfrac{21}{10}\)
\(\Rightarrow x=\dfrac{21}{10}:\dfrac{-3}{5}\)
\(\Rightarrow x=\dfrac{-7}{2}\)
a) \(\dfrac{13}{20}+\dfrac{3}{5}+x=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{5}{4}+x=\dfrac{5}{6}\)
\(\Rightarrow x=\dfrac{5}{6}-\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{-5}{12}\)
b) \(x+\dfrac{1}{3}=\dfrac{2}{5}-\dfrac{-1}{3}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{11}{15}\)
\(\Rightarrow x=\dfrac{11}{15}-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{2}{5}\)
c)\(\dfrac{-5}{8}-x=\dfrac{-3}{20}-\dfrac{-1}{6}\)
\(\dfrac{-5}{8}-x=\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-5}{8}-\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-77}{120}\)
d) \(\dfrac{3}{5}-x=\dfrac{1}{4}+\dfrac{7}{10}\)
\(\Rightarrow\dfrac{3}{5}-x=\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{3}{5}-\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{-7}{20}\)
e) \(\dfrac{-3}{7}-x=\dfrac{4}{5}+\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{-3}{7}-x=\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-3}{7}-\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-59}{105}\)
g) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
\(\Rightarrow\dfrac{-5}{6}-x=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-5}{6}-\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-13}{12}\)
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
Bài 7:
a, \(x\) = \(\dfrac{1}{5}\) + \(\dfrac{2}{11}\)
\(x\) = \(\dfrac{11}{55}\) + \(\dfrac{10}{55}\)
\(x=\dfrac{21}{55}\)
b, \(\dfrac{x}{15}\) = \(\dfrac{3}{5}\) - \(\dfrac{2}{3}\)
\(\dfrac{x}{15}\) = \(\dfrac{9}{15}\) - \(\dfrac{10}{15}\)
\(\dfrac{x}{15}\) = \(\dfrac{1}{15}\)
\(x\) = 1
c, \(\dfrac{11}{8}\) + \(\dfrac{13}{6}\)= \(\dfrac{85}{x}\)
\(\dfrac{33}{24}\) + \(\dfrac{52}{24}\) = \(\dfrac{85}{x}\)
\(\dfrac{85}{24}\) = \(\dfrac{85}{x}\)
24 = \(x\)
Bài 2:
a)|x| < 3
x\(\in\){-2;-1;0;1;2}
b)|x - 4 | < 3
x\(\in\){ 6 ; 5 ; 4 ; 3 ; 2 }
c) | x + 10 | < 2
x\(\in\){ -2 ; -10 }
Bài 1:
A = 1 + 2 - 3 + 4 + 5 - 6 +...+98 - 99
A = (1 + 4 + 7 +...+97) + [(2-3)+(5-6)+...+(98-99)]
A = 1617 + [(-1)+(-1)+...+(-1)]
A = 1617 + (-49)
A = +(1617-49) = A = 1568
B = - 2 - 4 + 6 - 8 + 10 + 12 - .... + 60
B =
2)
a) \(x\in\left\{2;1;0;-1;-2\right\}\)
b) \(x\in\left\{6;-6;5;-5;4\right\}\)
c) \(x\in\left\{-9;-11;-10\right\}\)
3)
\(\left(a;b\right)\in\left\{\left(0;1\right);\left(0;-1\right);\left(1;0\right);\left(-1;0\right)\right\}\)
a)
\(\frac{x-3}{10}=\frac{4}{x-3}\)
=> ( x - 3 )2 = 4 . 10.
( x - 3 )2 = 40
Mà x - 3 thuộc Z ( vì x thuộc Z ) nên ( x - 3 )2 là số chính phương.
Do 40 không là số chính phương.
=> Ko tìm được x thuộc Z thỏa mãn đề bài.
b)
\(\frac{x+5}{9}=\frac{4}{x+5}\)
=> ( x + 5 )2 = 4 . 9
( x + 5 )2 = 36
=> x + 5 = 6 hoặc x + 5 = -6.
+) x + 5 = 6
x = 1.
+) x + 5 = -6
x = -11.
Vậy x = 1; x = -11.
1/2x + 1/5 = 2/3x - 1/4
=> 1/2x - 2/3x = -1/4 - 1/5
=> -1/6x = -9/20
=> x = -9/20 : (-1/6)
=> x = 27/10
\(\frac{1}{2}x+\frac{1}{5}=\frac{2}{3}x-\frac{1}{4}\)
\(\frac{1}{2}x=\frac{2}{3}x-\frac{1}{4}-\frac{1}{5}\)
\(\frac{1}{2}x=-\frac{9}{20}+\frac{2x}{3}\)
\(\frac{1}{2}x=-\frac{9}{20}+\frac{2x}{3}-\frac{2x}{3}\)
\(-\frac{x}{6}=-\frac{9}{20}\)
\(6\left(-\frac{x}{6}\right)=6\left(-\frac{9}{20}\right)\)
\(-x=-\frac{27}{10}\)
\(\Rightarrow x=-\frac{27}{10}\)