Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(IM=\dfrac{1}{4}IB\Rightarrow IM=\dfrac{1}{5}BM\Rightarrow\overrightarrow{MI}=\dfrac{1}{5}\overrightarrow{MB}=-\dfrac{1}{10}\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)
\(\Rightarrow\overrightarrow{DI}=\overrightarrow{DM}+\overrightarrow{MI}=\dfrac{1}{2}\overrightarrow{DC}-\dfrac{1}{10}\left(\overrightarrow{BC}+\overrightarrow{BD}\right)=\dfrac{1}{2}\overrightarrow{DB}+\dfrac{1}{2}\overrightarrow{BC}-\dfrac{1}{10}\overrightarrow{BC}-\dfrac{1}{10}\overrightarrow{BD}\)
\(\Rightarrow\overrightarrow{DI}=\dfrac{2}{5}\overrightarrow{BC}-\dfrac{3}{5}\overrightarrow{BD}\)
\(\overrightarrow{DJ}=\overrightarrow{DC}+\overrightarrow{CJ}=\overrightarrow{DB}+\overrightarrow{BC}+x.\overrightarrow{CB}=\left(1-x\right)\overrightarrow{BC}-\overrightarrow{BD}\)
D; I; J thẳng hàng \(\Rightarrow\dfrac{1-x}{\dfrac{2}{5}}=\dfrac{1}{\dfrac{3}{5}}\Rightarrow x=\dfrac{1}{3}\)
\(\Rightarrow CJ=\dfrac{1}{3}CB\Rightarrow BJ=\dfrac{2}{3}BC\Rightarrow\dfrac{BJ}{BC}=\dfrac{2}{3}\)
Gọi N là trung điểm AD \(\Rightarrow\dfrac{BG}{BN}=\dfrac{2}{3}\) (theo t/c trọng tâm)
\(\Rightarrow\dfrac{BJ}{BC}=\dfrac{BG}{BN}\Rightarrow JG||CN\)
\(\Rightarrow\widehat{\left(JG;CD\right)}=\widehat{\left(CN;CD\right)}=\widehat{NCD}=30^0\) (do tam giác ACD đều)
1.1
\(cos2x+5sinx-3=0\)
\(\Leftrightarrow1-2sin^2x+5sinx-3=0\)
\(\Leftrightarrow2sin^2x-5sinx+2=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx=2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
1.
\(\left\{{}\begin{matrix}x_{A'}=x_A+\left(-1\right)=2\\y_{A'}=y_A+3=0\end{matrix}\right.\) \(\Rightarrow A'\left(2;0\right)\)
2.
\(\overrightarrow{MP}=\left(4;2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_{N'}=x_N+4=-4+4=0\\y_{N'}=y_N+2=1+2=3\end{matrix}\right.\)
\(\Rightarrow N'\left(0;3\right)\)
3.
\(\overrightarrow{MM'}=\left(13;7\right)\Rightarrow\overrightarrow{v}=\overrightarrow{MM'}=\left(13;7\right)\)
4.
\(\overrightarrow{MN}=\left(-2;-1\right)\Rightarrow MN=\sqrt{\left(-2\right)^2+\left(-1\right)^2}=\sqrt{5}\)
\(\Rightarrow M'N'=MN=\sqrt{5}\)
5.
Gọi G là trọng tâm ABC \(\Rightarrow G\left(2;1\right)\)
\(\overrightarrow{BC}=\left(-6;-3\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_{G'}=2-6=-4\\y_{G'}=1-3=-2\end{matrix}\right.\) \(\Rightarrow G'\left(-4;-2\right)\)
Lời giải:
$A=\cos 2x-2\sin 5x\sin x=\cos 2x-2.\frac{-1}{2}[\cos (5x+x)-\cos (5x-x)]$
$=\cos 2x+\cos 6x-\cos 4x$
$=(\cos 2x+\cos 6x)-\cos 4x$
$=2\cos \frac{2x+6x}{2}\cos \frac{6x-2x}{2}-\cos 4x$
$=2\cos 4x\cos 2x-\cos 4x$
$=\cos 4x[2\cos 2x-1]$
Những đáp án A,B,C,D bạn đưa ra không có đáp án nào đúng cả.
Mình cảm ơn bạn nhiều ạ! Mình cũng làm ra như vậy mà biến đổi mãi không sao ra.
3.
Hàm \(y=cos2x\) có chu kì \(T_1=\dfrac{2\pi}{2}=\pi\)
Hàm \(y=sin\dfrac{x}{2}\) có chu kì \(T_2=\dfrac{2\pi}{\dfrac{1}{2}}=4\pi\)
\(\Rightarrow y=cos2x+sin\dfrac{x}{2}\) có chu kì \(T=BCNN\left(\pi;4\pi\right)=4\pi\)
4.
\(y=cos3x\) có chu kì \(T_1=\dfrac{2\pi}{3}\)
\(y=cos5x\) có chu kì \(T_2=\dfrac{2\pi}{5}\)
\(\Rightarrow y=cos3x+cos5x\) có chu kì \(T=BCNN\left(\dfrac{2\pi}{3};\dfrac{2\pi}{5}\right)=2\pi\)
4.
\(A_n^2-C_{n+1}^{n-1}=5\)
ĐK: \(n\ge1\)
\(\dfrac{n!}{\left(n-2\right)!}-\dfrac{\left(n+1\right)!}{\left(n-1\right)!.2!}=5\)
\(\Leftrightarrow n\left(n-1\right)-\dfrac{\left(n+1\right)n}{2}=5\)
\(\Leftrightarrow n^2-3n-10=0\Rightarrow\left[{}\begin{matrix}n=5\\n=-2\left(loại\right)\end{matrix}\right.\)
5.
\(C_{14}^k+C_{14}^{k+2}=2C_{14}^{k+1}\) (\(k\ge0\))
\(\Leftrightarrow\dfrac{14!}{\left(14-k!\right).k!}+\dfrac{14!}{\left(14-k-2\right)!.\left(k+2\right)!}=\dfrac{2.14!}{\left(14-k-1\right)!.\left(k+1\right)!}\)
\(\Leftrightarrow\dfrac{\left(k+1\right)\left(k+2\right)}{\left(14-k\right)!.\left(k+2\right)!}+\dfrac{\left(14-k-1\right)\left(14-k\right)}{\left(14-k\right)!\left(k+2\right)!}=\dfrac{2\left(14-k\right)\left(k+2\right)}{\left(14-k\right)!\left(k+2\right)!}\)
\(\Leftrightarrow\left(k+1\right)\left(k+2\right)+\left(13-k\right)\left(14-k\right)=2\left(14-k\right)\left(k+2\right)\)
\(\Leftrightarrow k^2-12k+32=0\Rightarrow\left[{}\begin{matrix}k=4\\k=8\end{matrix}\right.\)
2.
\(\Leftrightarrow cos2x-cos8x-sin3x+cos5x-2sin5x.cos5x=0\)
\(\Leftrightarrow2sin5x.sin3x-sin3x+cos5x-2sin5x.cos5x=0\)
\(\Leftrightarrow sin3x\left(2sin5x-1\right)-cos5x\left(2sin5x-1\right)=0\)
\(\Leftrightarrow\left(sin3x-cos5x\right)\left(2sin5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos5x=sin3x=cos\left(\dfrac{\pi}{2}-3x\right)\\sin5x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{2}-3x+k2\pi\\5x=3x-\dfrac{\pi}{2}+k2\pi\\5x=\dfrac{\pi}{6}+k2\pi\\5x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+\dfrac{k\pi}{4}\\x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{5}\end{matrix}\right.\)
3.
\(\Leftrightarrow1+sinx=cosx-cos3x+2sinx.cosx+1-2sin^2x\)
\(\Leftrightarrow sinx=2sin2x.sinx+2sinx.cosx-2sin^2x\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\1=2sin2x+2cosx-2sinx\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4sinx.cosx+2cosx-2sinx-1=0\)
\(\Leftrightarrow2cosx\left(2sinx+1\right)-\left(2sinx+1\right)=0\)
\(\Leftrightarrow\left(2cosx+1\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐK: `x \ne kπ`
`cot(x-π/4)+cot(π/2-x)=0`
`<=>cot(x-π/4)=-cot(π/2-x)`
`<=>cot(x-π/4)=cot(x-π/2)`
`<=> x-π/4=x-π/2+kπ`
`<=>0x=-π/4+kπ` (VN)
Vậy PTVN.
1. Quá dài
2. Quá mờ, không thể đọc được, đặc biệt là phần 2
Em nên chụp lại cho rõ hơn và chia nhỏ ra
dạ rồi đấy ạ