![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
làm thế nào để sao chép lại đc cả màn hình thế bn, chỉ mk với !!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{\left(0,35+0,43\right)x}{5}=1\)
\(=>\frac{0,78x}{5}=1\)
\(=>0,78x=5\)
\(x=5:0,78\)
\(x=6,41025......\)
\(x\approx6,4\) ( khi làm tròn đến chữ số thập phân thứ 2 )
Vậy \(x\approx6,4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(-\frac{1}{4}.13\frac{9}{11}-0.25:\frac{68}{11}=-\frac{1}{4}.\frac{152}{11}-\frac{1}{4}.\frac{11}{68}\)
\(=\frac{1}{4}.\left(-\frac{152}{11}\right)-\frac{1}{4}.\frac{11}{68}\)
\(=\frac{1}{4}.\left(-\frac{152}{11}-\frac{11}{68}\right)\)
\(=\frac{1}{4}.\left(-\frac{10336}{748}-\frac{121}{748}\right)\)
\(=\frac{1}{4}.\left(-\frac{10457}{748}\right)\)
\(=-\frac{10457}{187}\)
Chuk bn hok tốt !
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{2}{7}\right)^{2014}\ge0\forall x\\\left(0,2-\dfrac{1}{5}y\right)^{2016}\ge0\forall y\end{matrix}\right.\)
Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\)
\(\Rightarrow Min_H=-1\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{7}\\y=1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay x = căn3 ; y = -1 ta được
\(D=3.3-5\left(-1\right)+1=9+5+1=15\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có: \(\widehat{BCA}+\widehat{ACD}=30+80=110\)
\(\widehat{ABC}+\widehat{BCD}=70+110=180\)
=>AB//CD ( Cặp góc trong cùng phía bù nhau)
Xét \(\Delta ABC\) có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( bđt \(\Delta\))
\(\Rightarrow\widehat{A}+70^0+30^0=180^0\)
\(\Rightarrow\widehat{A}=80^0\)
\(\Rightarrow\widehat{A}=\widehat{ACB}\)
Mà \(\widehat{A};\widehat{ABC}\) đồng vị
=> AB // CD
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\b+c+d=c+d+a=d+a+b=a+b+c\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)
Với \(a+b+c+d=0\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)
\(=-1-1-1-1=-4\)
Nếu \(a=b=c=d\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)