Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/6 = y/5 \(\Rightarrow\)x/12 = y/10
x/4 = z/7 \(\Rightarrow\)x/12 = x/21
Vì x/12 =y/10 ; x/12= z/21
\(\Rightarrow\)x/12 = y/10 = z/21
Ta có : x/12 = 2x/24
y/10 = 3y/30
Áp dụng tính chất của dãy tỉ sô bằng nhau ta có :
2x/24 = 3y/30= z/21 = 2x -3y + z / 24 - 30 + 21 = 75/ 15= 5
Ta có : x/12 = 5 \(\Rightarrow\)x = 5 x 12 = 60
y/10 =5 \(\Rightarrow\)y = 5 x 10 = 50
z/21 = 5 \(\Rightarrow\)z = 21 x 5 = 105
Vậy x = 60
y = 50
z = 105
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)
Vậy ....
Bài 1 :
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)
bài 2 :
Đặt \(x=2k;y=5k\Rightarrow xy=10k^2=10\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
Với k = 1 thì x = 2 ; y = 5
Với k = - 1 thì x = -2 ; y = -5
Ta có góc AYD và góc CYB là 2 góc đối đỉnh nên góc AYD=CYB=5 phần
góc AYCvà góc DYB là 2 góc đối đỉnh nên góc AYC=DYB=4 phần
=> góc AYD=360:(5.2+4.2).5=100 độ
góc BYD=360:(5.2+4.2).4=80 độ
Mình nghĩ là đúng rồi vì mình cũng đã có đáp án giống bạn nhưng chưa biết cách làm.
Cảm ơn bạn nhiều lắm!
Hix trình bày đề thiếu chuyên nghiệp :<<
Chỉnh đề: Tìm x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và \(x^2+y^2-z^2=-12\)
b) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\) và \(x+y-z=10\)
Giải:
a) Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=\dfrac{x^2+y^2-z^2}{4+9-25}=\dfrac{-12}{-12}=1\)
Vậy \(\left\{{}\begin{matrix}x^2=1.4=4\Rightarrow x=\pm2\\y^2=1.9=9\Rightarrow y=\pm3\\z^2=1.25=25\Rightarrow z=\pm5\end{matrix}\right.\)
b) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{40}=\dfrac{y}{60}\) (1)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{60}=\dfrac{z}{75}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{40}=\dfrac{y}{60}=\dfrac{z}{75}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\dfrac{x}{40}=\dfrac{y}{60}=\dfrac{z}{75}=\dfrac{x+y-z}{40+60-75}=\dfrac{10}{25}=\dfrac{2}{5}\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{2}{5}.40=16\\y=\dfrac{2}{5}.60=24\\z=\dfrac{2}{5}.75=30\end{matrix}\right.\)
a) Ta có:
x2=y3=z5⇒x24=y29=z225x2=y3=z5⇒x24=y29=z225
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
x24=y29=z225=x2+y2−z24+9−25=−12−12=1x24=y29=z225=x2+y2−z24+9−25=−12−12=1
Vậy ⎧⎪⎨⎪⎩x2=1.4=4⇒x=±2y2=1.9=9⇒y=±3z2=1.25=25⇒z=±5{x2=1.4=4⇒x=±2y2=1.9=9⇒y=±3z2=1.25=25⇒z=±5
b) x2=y3⇒x40=y60x2=y3⇒x40=y60 (1)
y4=z5⇒y60=z75y4=z5⇒y60=z75 (2)
Từ (1) và (2) suy ra x40=y60=z75x40=y60=z75
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
x40=y60=z75=x+y−z40+60−75=1025=25x40=y60=z75=x+y−z40+60−75=1025=25
Vậy ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=25.40=16y=25.60=24z=25.75=30
Ta có : \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\Rightarrow1:\frac{3}{x-1}=1:\frac{4}{y-2}=1:\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)
Khi đó x + y + z = 18
<=> 3k + 1 + 4k + 2 + 5k + 3 = 18
=> 12k + 6 = 18
=> 12k = 12
=> k = 1
=> x = 4 ; y = 6 ; z = 8
Bài giải
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}=\frac{3+4+5}{x-1+y-2+z-3}=\frac{12}{12}=1\)
\(\Rightarrow\text{ }\hept{\begin{cases}x=3\text{ : }1+1=4\\y=4\text{ : }1+2=6\\z=5\text{ : }1+3=8\end{cases}}\)
\(\Rightarrow\text{ }x=4\text{ ; }y=6\text{ ; }z=8\)
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12};\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)
\(\dfrac{x}{8}=\dfrac{-28}{19}\Rightarrow x=-\dfrac{224}{19}\\ \dfrac{y}{12}=\dfrac{-28}{19}\Rightarrow y=-\dfrac{336}{19}\\ \dfrac{z}{15}=\dfrac{-28}{19}\Rightarrow z=-\dfrac{420}{19}\)
mình hơi khó hiểu một chút nhưng cảm mơn bạn