K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:

$A=1+\frac{1}{\sqrt{x}-3}$

Để $A$ max thì $\sqrt{x}-3$ phải dương và nhỏ nhất. 

Với $x$ nguyên, để $\sqrt{x}-3$ dương và nhỏ nhất thì $x=10$

Khi đó, $A_{\max}=1+\frac{1}{\sqrt{10}-3}=4+\sqrt{10}$

------------------

$B=1+\frac{1}{\sqrt{x}-2}$.

Lập luận tương tự phần a, ta thấy với $x$ nguyên không âm thì $\sqrt{x}-2$ đạt giá trị dương nhỏ nhất tại $x=5$

$\Rightarrow B_{\max}=1+\frac{1}{\sqrt{5}-2}=3+\sqrt{5}$

6 tháng 3 2022

lỗi

6 tháng 3 2022

đăng lại đi

22 tháng 5 2023

Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`

   `=>(m+1)^2-m^2+2m-3 > 0`

`<=>m^2+2m+1-m^2+2m-3 > 0`

`<=>m > 1/2`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m^2-2m+3):}`

Ta có: `1/[x_1 ^2]-[4x_2]/[x_1]+3x_2 ^2=0`

`=>1-4x_1.x_2+3(x_1.x_2)^2=0`

`<=>1-4(m^2-2m+3)+3(m^2-2m+3)^2=0`

`<=>[(m^2-2m+3=1),(m^2-2m+3=1/3):}`

`<=>[(m^2-2m+2=0(VN)),(m^2-2m+8/3=0(VN)):}`

  `=>` Không có `m` thỏa mãn.

Gọi vận tốc của ô tô là x

=>Vận tốc xe máy là x-10

Theo đề, ta có: 120/(x-10)-120/x=1

=>(120x-120x+1200)/x(x-10)=1

=>x^2-10x=1200

=>x^2-10x-1200=0

=>x=40

6 tháng 2 2022

\(X=\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{2-\sqrt{x}}\left(đk:x\ge0;x\ne4\right)\)

\(X=\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-2}\)

\(X=\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(X=\dfrac{3+2\sqrt{x}-4-\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(X=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(X=\dfrac{1}{\sqrt{x}+1}\)

6 tháng 2 2022

\(S=\left(\dfrac{1}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right):\left(\dfrac{1-\sqrt{x}}{x+4\sqrt{x}+4}\right)\left(đk:x\ge0;x\ne1\right)\)

\(S=\left(\dfrac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{1-\sqrt{x}}{x+4\sqrt{x}+4}\right)\)

\(S=\dfrac{\sqrt{x}-2+x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{x+4\sqrt{x}+4}{1-\sqrt{x}}\)

\(S=\dfrac{x+3\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}\)

\(S=\dfrac{\left(x+3\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(1-\sqrt{x}\right)}\)

(đến đoạn này thì trong ngoặc ko tách ra đc nữa nên mik nghĩ là đến đây là xong, nếu sai thì bn nói mik)

a: \(=\dfrac{\sqrt{3}\left(x\sqrt{2}+y\sqrt{5}\right)}{2\left(x\sqrt{2}+y\sqrt{5}\right)}=\dfrac{\sqrt{3}}{2}\)

b: \(=\dfrac{a+\sqrt{a}-a-2}{\sqrt{a}+1}:\dfrac{a-\sqrt{a}+\sqrt{a}-4}{a-1}\)

\(=\dfrac{\left(\sqrt{a}-2\right)}{\sqrt{a}+1}\cdot\dfrac{a-1}{a-4}=\dfrac{\sqrt{a}-1}{\sqrt{a}+2}\)

a: góc AED+góc AFD=180 độ

=>AEDF nội tiếp

=>góc AEF=góc ADF=góc C

=>góc FEB+góc FCB=180 độ

=>FEBC nội tiếp

b: Xét ΔGBE và ΔGFC có

góc GBE=góc GFC

góc G chung

=>ΔGBE đồng dạng với ΔGFC

=>GB/GF=GE/GC

=>GB*GC=GF*GE

7 tháng 1 2022

post vừa rồi bị lỗi ảnh nên em post lại ạ ...

a: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp