Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
71.
\(\left\{{}\begin{matrix}BB'\perp\left(ABCD\right)\\BB'\in\left(ABB'A'\right)\end{matrix}\right.\) \(\Rightarrow\left(ABCD\right)\perp\left(ABB'A'\right)\)
74.
\(\left\{{}\begin{matrix}DD'\perp\left(ABCD\right)\\DD'\in\left(CDD'C'\right)\end{matrix}\right.\) \(\Rightarrow\left(ABCD\right)\perp\left(CDD'C'\right)\)
Giả thiết suy ra MN là đường trung bình tam giác ABC \(\Rightarrow MN||BC\)
Mà \(\left\{{}\begin{matrix}MN=\left(DMN\right)\cap\left(ABC\right)\\BC=\left(BCD\right)\cap\left(ABC\right)\end{matrix}\right.\)
Và D là 1 điểm chung của (BCD) và (DMN)
\(\Rightarrow\) Giao tuyến của (BCD) và (DMN) phải là 1 đường thẳng qua D và song song MN (hoặc BC)
Do vai trò của 3 biến là như nhau, không mất tính tổng quát giả sử \(x>y>z\)
Ta có: \(x-z=\left(x-y\right)+\left(y-z\right)\)
Đặt \(\left\{{}\begin{matrix}x-y=a>0\\y-z=b>0\end{matrix}\right.\)
Do \(x;z\in\left[0;2\right]\Rightarrow x-z\le2\) hay \(a+b\le2\)
Ta có:
\(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\)
\(P\ge\dfrac{9}{\left(a+b\right)^2}\ge\dfrac{9}{2^2}=\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=2\\\end{matrix}\right.\) \(\Rightarrow a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị
a.
\(\Leftrightarrow2cos^2x-1-\sqrt{3}sin2x-\sqrt{3}sinx-cosx+4=0\)
\(\Leftrightarrow2cos^2x-2\sqrt{3}sinx.cosx-\sqrt{3}sinx-cosx+3=0\)
\(\Leftrightarrow4cos^2x-4\sqrt{3}sinx.cosx-2\sqrt{3}sinx-2cosx+6=0\)
\(\Leftrightarrow4cos^2x-4\sqrt{3}sinx.cosx-2\sqrt{3}sinx-2cosx+2+4\left(sin^2x+cos^2x\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(4cos^2x-4cosx+1\right)+\dfrac{1}{2}\left(4sin^2x-4\sqrt{3}sinx+3\right)+2\left(3cos^2x-2\sqrt{3}sinx.cosx+sin^2x\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(2cosx-1\right)^2+\dfrac{1}{2}\left(2sinx-\sqrt{3}\right)^2+2\left(\sqrt{3}cosx-sinx\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2cosx-1=0\\2sinx-\sqrt{3}=0\\\sqrt{3}cosx-sinx=0\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{3}+k2\pi\)
b.
\(\Leftrightarrow\left(3tan^2x-2\sqrt{3}tanx+1\right)+\left(4sin^2x-4sinx+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{3}tanx-1\right)^2+\left(2sinx-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}tanx-1=0\\2sinx-1=0\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k2\pi\)
\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\Rightarrow\dfrac{ab+bc+ca}{abc}\ge\dfrac{3\left(a+b+c\right)}{ab+bc+ca}\)
\(\Rightarrow a+b+c\ge\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{16}\left(\dfrac{ab+bc+ca}{abc}\right)\ge\dfrac{3}{16}\left(\dfrac{a+b+c}{ab+bc+ca}\right)\)
\(\Rightarrow ab+bc+ca\ge\dfrac{3}{16}\)
Ta có:
\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\dfrac{a+c}{2}}+\sqrt{\dfrac{a+c}{2}}\ge3\sqrt[3]{\dfrac{\left(a+b\right)\left(a+c\right)}{2}}\)
\(\Rightarrow\left(\dfrac{1}{a+b+\sqrt{2\left(a+c\right)}}\right)^3\le\dfrac{2}{27\left(a+b\right)\left(a+c\right)}\)
Tương tự và cộng lại:
\(P\le\dfrac{2}{27}\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(a+b\right)\left(b+c\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\)
\(P\le\dfrac{4}{27}.\dfrac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Mặt khác:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}.\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)
\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Rightarrow P\le\dfrac{4}{27}.\dfrac{a+b+c}{\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=\dfrac{1}{6\left(ab+bc+ca\right)}\le\dfrac{1}{6.\dfrac{3}{16}}=\dfrac{8}{9}\)
Gọi số học sinh nam là a (18<a<36)
Số học sinh nam biết bơi là b, số học sinh nữ biết bơi là c (lẻ)
\(\Rightarrow\dfrac{C_b^1.C_c^1}{C_a^1.C_{36-a}^1}=\dfrac{140}{299}\)
\(\Rightarrow299bc=140a\left(36-a\right)\)
Do \(a+36-a=36\) chẵn \(\Rightarrow\) a và \(36-a\) cùng tính chẵn lẻ
Mặt khác 299 và 140 nguyên tố cùng nhau \(\Rightarrow a\left(36-a\right)⋮299\left(=13.23\right)\)
Do 18<a<36 \(\Rightarrow\) mỗi số a và 36-a không thể đồng thời chia hết 13 và 23
\(\Rightarrow\) a chia hết cho 13 hoặc 23
TH1: \(a⋮13\Rightarrow a=26\Rightarrow36-a=10\) không chia hết 23 (loại)
TH2: \(a⋮23\Rightarrow a=23\Rightarrow36-a=13\) (thỏa mãn)
\(\Rightarrow bc=140\left(=4.5.7\right)\)
Do c lẻ, và \(c< 36-a=13\), đồng thời \(b< a=23\)
TH1: \(c=5\Rightarrow b=28>a\left(ktm\right)\)
TH2: \(c=7\Rightarrow b=20\) (thỏa mãn)
Vậy có 20 học sinh nam biết bơi
Câu 2:
Cho $x=0$ thì: $f(y)=f(0)+y$ với mọi $y\in\mathbb{R}$
Thay vô điều kiện số 2:
$f(0)+\frac{1}{y}=\frac{f(0)+y}{y^2}, \forall y\neq 0$
$\Rightarrow f(0)y^2+y=f(0)+y, \forall y\neq 0$
$\Leftrightarrow f(0)y^2=f(0), \forall y\neq 0$
$\Rightarrow f(0)=0$
Khi đó: $f(y)=f(0)+y=y, \forall y\in\mathbb{R}$