Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a. \(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\)
b. \(sinx\ne1\Leftrightarrow x\ne\frac{\pi}{2}+k2\pi\)
c. Hàm luôn xác định với mọi x
a/
\(\Leftrightarrow2sinx.cosx+2\sqrt{3}cos^2x=\sqrt{3}-2sin5x\)
\(\Leftrightarrow sin2x+\sqrt{3}\left(cos2x+1\right)=\sqrt{3}-2sin5x\)
\(\Leftrightarrow sin2x+\sqrt{3}cos2x=-2sin5x\)
\(\Leftrightarrow\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x=-sin5x\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=sin\left(-5x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=-5x+k2\pi\\2x+\frac{\pi}{3}=\pi+5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{21}+\frac{k2\pi}{7}\\x=-\frac{2\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)
b/
\(\Leftrightarrow sinx+\sqrt{3}cosx=2sin3x+2sinx\)
\(\Leftrightarrow sinx-\sqrt{3}cosx=-2sin3x\)
\(\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=-sin3x\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=sin\left(-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=-3x+k2\pi\\x-\frac{\pi}{3}=\pi+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{2\pi}{3}+k\pi\end{matrix}\right.\)
những câu hỏi không liên quan đến THCS thì bạn vào h để có thể được giải đáp tốt hơn
pt <=> 1+cos2x + cos3x + cosx = 0
<=> 2cos²x + 2cos2x.cosx = 0
<=> 2cosx.(cos2x + cosx) = 0
<=> 4cosx.cos(3x/2).cos(x/2) = 0 <=>
[cosx = 0
[cos(3x/2) = 0 (tập nghiệm cos3x/2 = 0 chứa tập nghiệm cosx/2 = 0)
<=>
[x = pi/2 + kpi
[3x/2 = pi/2 + kpi
<=>
[x = pi/2 + kpi
[x = pi/3 + 2kpi/3 (k thuộc Z)
sin^2 x + sin^2 2x + sin^2 3x + sin^2 4x =
[1-cos(2x)]/2+ [1-cos(4x)]/2+[1-cos(6x)]/2+[1-cos(8x)]/... =
2- [ cos(2x)+cos(4x)+cos(6x)+cos(8x)]/2 =
2- 1/2· [ cos(2x)+cos(8x)]+cos(4x)+cos(6x)]=
2- 1/2· [ 2·cos(-3x)·cos(5x) + 2· cos(-x)·cos(5x)]=
2- cos(5x)· [cos(3x)+cosx] =
2- cos(5x)· 2·cos(2x)·cosx =
2- 2·cosx·cos(2x)·cos(5x)= 2 <-->
*cosx=0 --> x= pi/2+ k·pi with k thuộc Z or
*cos(2x)=0 --> x= pi/4 + k·pi/2 with k thuộc Z or
* cos(5x)=0 --> x= pi/10+ k·pi/5 with k thuộc Z
ĐKXĐ: ...
Đặt \(cosx-\frac{1}{cosx}=a\Rightarrow cos^2x+\frac{1}{cos^2x}=a^2+2\)
Pt trở thành:
\(a^2+2+a-\frac{7}{4}=0\)
\(\Leftrightarrow4a^2+4a+1=0\Leftrightarrow\left(2a+1\right)^2=0\)
\(\Rightarrow a=-\frac{1}{2}\Rightarrow cosx-\frac{1}{cosx}=-\frac{1}{2}\)
\(\Leftrightarrow2cos^2x+cosx-2=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{17}-1}{4}\\cosx=\frac{-\sqrt{17}-1}{4}< -1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm arccos\left(\frac{\sqrt{17}-1}{4}\right)+k2\pi\)
Ta có: sinx/2-cosx/2=1/2
<=> (sinx/2-cosx/2)2=1/4
<=> 1- sinx= 1/4
<=> sinx = 3/4
=> cosx = căn7/4 hoặc cosx= -căn7/4
=> sin2x = 2sinx.cosx
=> sin2x = 3. căn7/8 hoặc sin2x=-3.căn7/8