K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4.42:

a:=>x+y=0 và y-1=0

=>y=1 và x=-1

b: =>x-5=0 và 2y-7=0

=>x=5 và y=7/2

Bài 5: 

1) Ta có: \(2x\left(x+1\right)-2x^2-2x\)

\(=2x^2+2x-2x^2-2x\)

=0

2) Ta có: \(3x\left(x-2\right)-3\left(x^2-2x\right)+4\)

\(=3x^2-6x-3x^2+6x+4\)

=4

3) Ta có: \(\left(x-1\right)\left(x-5\right)-x^2+6x-5\)

\(=x^2-6x+5-x^2+6x-5\)

=0

4) Ta có: \(\left(2x+1\right)\left(x-1\right)-2x^2+x-5\)

\(=2x^2-2x+x-1-2x^2+x-5\)

=-6

5) Ta có: \(\left(3x-2\right)\left(x-1\right)-3x^2+5x-4\)

\(=3x^2-3x-2x+2-3x^2+5x-4\)

=-2

6) Ta có: \(2x\left(x+1\right)-x\left(x+3\right)-x^2+x+5\)

\(=2x^2+2x-x^2-3x-x^2+x+5\)

=5

5 tháng 8 2021

cảm ơn bạn vui

26 tháng 10 2023

1)

\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)

Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:

\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)

2) Bạn xem lại đề!

17 tháng 10 2016

A= 2006 X 2008 - 20072

A = 2006 . 2008 - 2007 . 2007

A = 2006 . ( 2007 + 1 ) - 2007 . ( 2006 + 1 )

A = 2006 . 2007 + 2006 - 2007 . 2006 + 2007

A = -1

B= 2016 X 2018 - 20172

B= 2016 . 2018 - 2017 . 2017

B = 2016 . ( 2017 + 1 ) - 2017 . ( 2016 + 1 )

B = 2016 . 2017 + 2016 - 2017 . 2016 + 2017

B = -1

17 tháng 10 2016

cảm ơn bạn nhé....

\(\Leftrightarrow\left(x+3\right)^2\cdot\left(x-3\right)^2-6\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x^2-9\right)\left(x-3\right)-6\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^3-3x^2-9x+21\right)=0\)

=>x+3=0

hay x=-3

11 tháng 2 2022

\(\Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2=6\left(x+3\right)\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)\left(x-3\right)^2-6\right]=0\)

Vì \(\left[\left(x+3\right)\left(x-3\right)^2-6\right]\ne0\)

\(\Rightarrow x+3=0\)

\(\Rightarrow x=-3\)

17 tháng 11 2018

Bạn nào giúp mình thì mình k luôn

17 tháng 11 2018

Kẻ CH ⊥ BI và CH cắt BA tại D. Tam giác BCD có BH vừa là phân giác vừa là đường cao => Tam giác BCD cân tại B => BH là đường trung tuyến luôn => CH = DH. và DC = 2HC. 
Đặt BC = x() Ta có: AD = BD - AB = BC - AB = x - 5 
Gọi giao điểm của AC và BH là E. 
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh) 
=> tam giác AEB ~ tam giác HEC(g.g) 
=> Góc HCE = góc ABE. 
=> Góc HCE = góc ABC/2 (1) 
Mà Góc ECI = gócACB/2 (2) 
Từ (1) và (2) => Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ. 
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ) 
=> tam giác HIC vuông cân tại H => HI = HC. 
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2CH² = IC² 
=> √2.CH = IC 
=> CH = (IC)/(√2) 
=> CH = 6/(√2) 
=> DC = 2CH = 12/(√2) = 6√2 
Xét tam giác: ADC có góc DAC = 90độ 
=> Áp dụng định lý Py-ta-go ta có: DC² = AD² + AC² 
=> AC² = DC² - AD² 
=> AC² = (6√2)² - (x - 5)² (3) 
Tương tự đối với tam giác ABC ta có: AC² = BC² - AB² 
=> AC² = x² - 5² (4) 
Từ (3) và (4) => (6√2)² - (x - 5)² = x² - 5² 
<=> 72 - (x² - 10x + 25) = x² - 25 
<=> 72 - x² + 10x - 25 - x² + 25 = 0 
<=> -2x² + 10x + 72 = 0 
<=> x² - 5x - 36 = 0 
<=> x² - 9x + 4x - 36 = 0 
<=> x(x - 9) + 4(x - 9) = 0 
<=> (x - 9)(x + 4) = 0 
<=> x - 9 = 0 hoặc x + 4 = 0 
<=> x = 9 hoặc x = -4 
=> chỉ có giá trị x = -9 là thoả mãn đk x > 5 
=> BC = 5cm 

b/ Tương tự ta tính được: CH = √5. => IH = √5 (cm) 
=> BH = BI + IH = √5 + √5 = 2√5 (cm). 
Xét tam giác BHC có góc BHC = 90độ => tính được BC = 5(cm). Kẻ IK ⊥ BC tại K. 
Ta có IK = 1/2 đường cao hạ từ đỉnh H của tam giác BHC (chứng minh dựa vào tính chất đường trung bình). 
=> IK.BC = S(BHC) = BH.HC/2 
<=> IK.5 = 5 
=> IK = 1(cm). 
Xét tam giác BIK => tính được BK = 2 cm. 
Kẻ IF vuông góc với AB => ta chứng minh đựơc BF = BK và AF = IF = IK 
=> AB = (2 + 1)=3 (cm) 
=> AC = 4cm

a: Xét ΔABC có 

N là trung điểm của AC
M là trung điểm của BC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//AB

hay ABMN là hình thang

9 tháng 4 2021

`|x^2-5x|<6`

`<=>-6<x^2-5x<6`

`+)x^2-5x> -6`

`<=>x^2-5x+6>0`

`<=>(x-2)(x-3)>0`

`<=>x>3\or\x<2(1)`

`+)x^2-5x<6`

`<=>x^2-5x-6<0`

`<=>(x-6)(x+1)<0`

`<=>-1<x<6(2)`

`(1)(2)=>3<x<6\or\-1<x<2`