Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mọi người cho em hỏi với parabol (P): \(y^2=2px\left(p>0\right)\) thì tham số tiêu là bao nhiêu ạ???
Gọi số tiền mẹ cho anh là a;số tiền mẹ cho em là b
Ta có a-2/3a=b-3/4b
=>1/3a=1/4b
=>a=1/4b:1/3
=>a=3/4b
Mà a+b=105000
Hay 3/4b+b=105000
=>7/4b=105000
=>b=105000:7/4
=>b=60000
=>a=105000-60000
=>a=45000
Vậy mẹ đã cho cho anh 45000 đồng;cho em 60000 đồng
C,D thuộc (P) nên \(C\left(x_1;x_1^2-4x_1-5\right);D\left(x_2;x_2^2-4x_2-5\right)\)
ABCD là hình bình hành
=>\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\overrightarrow{AB}=\left(3;-4\right);\overrightarrow{DC}=\left(x_1-x_2;x_1^2-4x_1-5-x_2^2+4x_2+5\right)\)
=>\(\left\{{}\begin{matrix}x_1-x_2=3\\x_1^2-x_2^2-4x_1+4x_2=-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_1-x_2=3\\\left(x_1-x_2\right)\left(x_1+x_2-4\right)=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=3\\x_1+x_2-4=-\dfrac{4}{x_1-x_2}=-\dfrac{4}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_1-x_2=3\\x_1+x_2=-\dfrac{4}{3}+4=\dfrac{12}{3}-\dfrac{4}{3}=\dfrac{8}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x_1=3+\dfrac{8}{3}=\dfrac{17}{3}\\x_1+x_2=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{17}{6}\\x_2=\dfrac{8}{3}-\dfrac{17}{6}=-\dfrac{1}{6}\end{matrix}\right.\)
Khi x=17/6 thì \(y=x^2-4x-5=\left(\dfrac{17}{6}\right)^2-4\cdot\dfrac{17}{6}-5=-\dfrac{299}{36}\)
Khi x=-1/6 thì \(y=\left(-\dfrac{1}{6}\right)^2-4\cdot\dfrac{-1}{6}-5=\dfrac{1}{36}+\dfrac{2}{3}-5=-\dfrac{155}{36}\)
Vậy: \(C\left(\dfrac{17}{6};-\dfrac{299}{36}\right);D\left(-\dfrac{1}{6};-\dfrac{155}{36}\right)\)
\(\overline{abcde}\)
TH1: e=0
=>Có 7*6*5*4=840 cách
TH2: e<>0
e có 3 cách
a có 6 cách
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 3*6*6*5*4=2160 cách
=>Có 3000 cách
Do (P) và (d) đều đi qua điểm (1;3) nên:
\(\left\{{}\begin{matrix}a+b+c=3\\a+b=3\end{matrix}\right.\) \(\Rightarrow c=0\)
Từ \(a+b=3\Rightarrow b=3-a\)
Vậy pt (d) và (P) lần lượt có dạng: \(\left\{{}\begin{matrix}y=ax^2+\left(3-a\right)x\\y=ax+3-a\end{matrix}\right.\)
Pt hoành độ giao điểm (P) và (d):
\(ax^2+\left(3-a\right)x=ax+3-a\)
\(\Leftrightarrow ax^2+\left(3-2a\right)x+a-3=0\) (1)
(P) tiếp xúc (d) khi và chỉ khi (1) có nghiệm kép
\(\Leftrightarrow\Delta=\left(3-2a\right)^2-4a\left(a-3\right)=0\)
\(\Leftrightarrow9=0\) (vô lý)
Vậy ko tồn tại a;b;c thỏa mãn yêu cầu đề bài
a) Tọa độ điểm F là: \(F\left( {\frac{p}{2};0} \right)\) và phương trình đường chuẩn là: \(\Delta :x = - \frac{p}{2}\)
b) Ta có: \(MF = \sqrt {{{\left( {x - \frac{p}{2}} \right)}^2} + {y^2}} ,d\left( {M,\Delta } \right) = \left| {x + \frac{p}{2}} \right|\). Để M thuộc (P) thì \(MF{\rm{ }} = \;d\left( {M,\Delta } \right) \Leftrightarrow \sqrt {{{\left( {x - \frac{p}{2}} \right)}^2} + {y^2}} = \left| {x + \frac{p}{2}} \right|\)
Đáp án: A
(P): y 2 = x ⇒ p = 1/2
Ta có:
Hoành độ của điểm M chính là độ dài đoạn OK