Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)
\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)
6:
\(2x^2+3xy-2y^2=7\)
=>\(2x^2+4xy-xy-2y^2=7\)
=>\(2x\left(x+2y\right)-y\left(x+2y\right)=7\)
=>(x+2y)(2x-y)=7
=>\(\left(x+2y;2x-y\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
TH1: \(\left\{{}\begin{matrix}x+2y=1\\2x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+4y=2\\2x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5y=-5\\x+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-1\\x=1-2y=1-2\cdot\left(-1\right)=3\end{matrix}\right.\)
=>Nhận
TH2: \(\left\{{}\begin{matrix}x+2y=7\\2x-y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y=7\\4x-2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=9\\2x-y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1,8\\y=2x-1=2\cdot1,8-1=2,6\end{matrix}\right.\)
=>Loại
TH3: \(\left\{{}\begin{matrix}x+2y=-1\\2x-y=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+4y=-2\\2x-y=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5y=-2+7=5\\2x-y=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=1\\2x=-7+y=-7+1=-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
=>Nhận
TH4: \(\left\{{}\begin{matrix}x+2y=-7\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y=-7\\4x-2y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=-9\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1,8\\y=2x+1=2\cdot\left(-1,8\right)+1=-2,6\end{matrix}\right.\)
=>Loại