Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có sinB=\(\dfrac{AH}{AB}\)\(\Rightarrow\)AH=AB.sinB=3,6.sin62=3,18
BH=\(\sqrt{AB^2-AH^2}\)(pytago)=\(\sqrt{3,6^2-3,18^2}\)=1,69
\(_{\widehat{C}}\)=90-\(\widehat{B}\)=90-62=28\(^0\)
sinC=\(\dfrac{AB}{BC}\)\(\Rightarrow\)BC=\(\dfrac{AB}{sinC}\)=\(\dfrac{3,6}{sin28}\)=7,67
mà:CH=BC-BH=7,67-1,69=5,98
AC=\(\sqrt{BC^2-AB^2}\)(pytago)=\(\sqrt{7,67^2-3,6^2}\)=6.77
DKXD : \(x\ge-1;y\ne-1\)
Dat : \(\left\{{}\begin{matrix}\sqrt{x+1}=a\left(a\ge0\right)\\y+1=b\left(b\ne0\right)\end{matrix}\right.\)
hpt<=>\(\left\{{}\begin{matrix}a+2-\dfrac{2}{y+1}=2\\2a-\dfrac{1}{y+1}=\dfrac{3}{2}\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}a+2-\dfrac{2}{b}=2\\2a-\dfrac{1}{b}=\dfrac{3}{2}\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}a-\dfrac{2}{b}=0\\4a-\dfrac{2}{b}=3\end{matrix}\right.< =>\left\{{}\begin{matrix}3a=3\\a=\dfrac{2}{b}\end{matrix}\right.< =>\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)(tmdk)
\(=>\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)(tmdk)
2:
a: Xét tứ giác DIHK có
\(\widehat{DIH}=\widehat{DKH}=\widehat{IDK}=90^0\)
Do đó: DIHK là hình chữ nhật
Suy ra: DH=KI(1)
Xét ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF
nên \(DH^2=HE\cdot HF\left(2\right)\)
Từ (1) và (2) suy ra \(IK^2=HE\cdot HF\)
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
Nửa chu vi hình chữ nhật : 42 : 2 = 21(m)
Gọi x(m) là chiều dài hình chữ nhật ( 10 < x < 21 )
=> Chiều rộng hình chữ nhật = 21 - x (m)
Theo đlí Pythagoras ta có : x2 + ( 21 - x )2 = 152
<=> x2 + x2 - 42x + 441 - 225 = 0
<=> 2x2 - 42x + 216 = 0
<=> x2 - 21x + 108 = 0 <=> ( x - 12 )( x - 9 ) = 0
<=> x = 12 (tm) hoặc x = 9 (ktm)
=> Chiều dài = 12m ; chiều rộng 9m