Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(PT\Leftrightarrow\sqrt{\left(x-3\right)^2}=4x-21\\ \Leftrightarrow\left|x-3\right|=4x-21\\ \Leftrightarrow\left[{}\begin{matrix}x-3=4x-21\left(x\ge3\right)\\3-x=4x-21\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\x=\dfrac{24}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=6\)
1.
\(\dfrac{1-cosx+cos2x}{sin2x-sinx}=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)
\(=\dfrac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\dfrac{cosx}{sinx}=cotx\)
2.
\(\dfrac{1+tan^4x}{tan^2x+cot^2x}=\dfrac{1+tan^4x}{tan^2x+\dfrac{1}{tan^2x}}=\dfrac{1+tan^4x}{\dfrac{tan^4x+1}{tan^2x}}=tan^2x\)
3.
\(sin^4x+cos^4x=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)
\(=1-2sin^2x.cos^2x\)
4.
Áp dụng câu 3:
\(sin^4x+cos^4x=1-2sin^2x.cos^2x\)
\(=1-\dfrac{1}{2}\left(2sinx.cosx\right)^2\)
\(=1-\dfrac{1}{2}sin^22x\)
5.
\(sin\left(x+y\right)sin\left(x-y\right)=\dfrac{1}{2}cos\left[\left(x-y\right)-\left(x+y\right)\right]-\dfrac{1}{2}cos\left[\left(x-y\right)+\left(x+y\right)\right]\)
\(=\dfrac{1}{2}\left(cos2y-cos2x\right)=\dfrac{1}{2}\left(1-2sin^2y\right)-\dfrac{1}{2}\left(1-2sin^2x\right)\)
\(=sin^2x-sin^2y\)
6.
\(tanx+cotx=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}\)
\(=\dfrac{1}{sinx.cosx}=\dfrac{2}{2sinx.cosx}=\dfrac{2}{sin2x}\)
b: \(VT=\left[\dfrac{\dfrac{sinx}{cosx}+sinx}{1+cosx}\right]^2+1\)
\(=\left[\dfrac{sinx\left(\dfrac{1}{cosx}+1\right)}{cosx\left(1+\dfrac{1}{cosx}\right)}\right]^2+1\)
=1/cos^2x=VP
a, Vì 3 chia hết cho x-1 => x-1 thuộc Ư(-3)=1,3,-1,-3
Ta có bảng
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
Vậy x thuộc 2 ; 4;0;-2
b, Vì -4 chia hết cho 2x - 1 nên 2x-1 ϵ Ư(-4) = 1;2;4;-1;-2;-4
Ta có bảng :
2x-1 | 1 | 2 | 4 | -1 | -2 | -4 |
x | 1 | vô lý | vô lý | 0 | vô lý | vô lỹ |
Vây x= 1 và 0