K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

\(a,A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\\ b,A=\dfrac{2\left(\sqrt{x}+1\right)-3}{\sqrt{x}+1}=2-\dfrac{3}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{1;3\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\\ \Leftrightarrow x\in\left\{0;4\right\}\left(tm\right)\)

25 tháng 10 2021

a) \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(\Rightarrow A=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{\left(2x-2\sqrt{x}\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

24 tháng 10 2021

a: \(4-\sqrt{3-2x}=0\)

\(\Leftrightarrow3-2x=16\)

hay \(x=-\dfrac{13}{2}\)

Gọi chiều rộng là x

Chiều dài là 17-x

Theo đề, ta có: \(\left(x+2\right)\left(20-x\right)=x\left(17-x\right)+45\)

\(\Leftrightarrow20x-x^2+40-2x=17x-x^2+45\)

=>18x+40=17x+45

=>x=5

Vậy: Chiều rộng là 5m

Chiều dài là 12m

28 tháng 2 2022

em cám ơn ạ

 

1 tháng 8 2023

Bài 4:

\(a,\sqrt{64.\left(x-1\right)^2}=16\\ \Leftrightarrow8\sqrt{\left(x-1\right)^2}=16\\ \\ \Leftrightarrow\sqrt{\left(x-1\right)^2}=\dfrac{16}{8}=2\\ \left|x-1\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\\ b,\sqrt{4\left(x-2\right)}=8\\ \Leftrightarrow2\sqrt{x-2}=8\\ \Leftrightarrow\sqrt{x-2}=\dfrac{8}{2}=4\\ \Leftrightarrow x-2=4^2=16\\ \Leftrightarrow x=16+2=18\\ c,\dfrac{\sqrt{2x}}{\sqrt{8}}=5\\ \Leftrightarrow\dfrac{\sqrt{2}\sqrt{x}}{2\sqrt{2}}=5\\ \Leftrightarrow\dfrac{\sqrt{x}}{2}=5\\ \Leftrightarrow\sqrt{x}=5.2=10\\ \Leftrightarrow x=10^2=100\)

1 tháng 8 2023

Bài 2:

\(a,\left(\sqrt{75}-2\sqrt{12}-\sqrt{27}\right).\sqrt{3}\\ =\left(\sqrt{3.5^2}-2.\sqrt{3.2^2}-\sqrt{3.3^2}\right).\sqrt{3}\\ =\left(5\sqrt{3}-2.2\sqrt{3}-3\sqrt{3}\right).\sqrt{3}\\ =-2\sqrt{3}.\sqrt{3}=-2.3=-6\\ b,\left(5\sqrt{2}-\sqrt{8}-\sqrt{98}\right):\sqrt{2}\\ =\left(5\sqrt{2}-\sqrt{2^2.2}-\sqrt{2.7^2}\right):\sqrt{2}\\ =\left(5\sqrt{2}-2\sqrt{2}-7\sqrt{2}\right):\sqrt{2}\\ =-4\sqrt{2}:\sqrt{2}=-4\)

\(c,\\ \dfrac{\sqrt{18}}{\sqrt{2}}=\sqrt{\dfrac{18}{2}}=\sqrt{9}=\sqrt{3^2}=3\\ d,\\ \sqrt{\dfrac{45}{7}}.\sqrt{\dfrac{28}{5}}=\sqrt{\dfrac{45.28}{7.5}}=\sqrt{\dfrac{9.5.4.7}{7.5}}=\sqrt{9.4}=\sqrt{36}=\sqrt{6^2}=6\)

NV
14 tháng 8 2021

a. Phương trình hoành độ giao điểm:

\(3x-5=-2x\)

\(\Leftrightarrow5x=5\)

\(\Rightarrow x=1\)

Thế vào \(y=3x-5\Rightarrow y=3.1-5=-2\)

Vậy \(A\left(1;-2\right)\)

b. Gọi phương trình d có dạng \(y=ax+b\)

Do d song song \(d_1\Rightarrow a=1\Rightarrow y=x+b\)

Do d qua A nên: \(y_A=x_A+b\Leftrightarrow-2=1+b\Rightarrow b=-3\)

Vậy pt d có dạng: \(y=x-3\)

a: Khi m=1 thì hệ sẽ là x+y=1 và x-y=2

=>x=1,5; y=0,5

b: \(\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\m\left(1-y\right)-y=2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\m-my-y=2m\end{matrix}\right.\)

=>x=1-y và y(-m-1)=m

=>x=1-y và y=-m/m+1

=>x=1+m/m+1=2m+1/m+1 và y=-m/m+1

Để x,y nguyên thì 2m+1 chia hết cho m+1 và -m chia hết cho m+1

=>\(m+1\in\left\{1;-1\right\}\)

=>\(m\in\left\{0;-2\right\}\)

8 tháng 8 2021

ta có sinB=\(\dfrac{AH}{AB}\)\(\Rightarrow\)AH=AB.sinB=3,6.sin62=3,18

BH=\(\sqrt{AB^2-AH^2}\)(pytago)=\(\sqrt{3,6^2-3,18^2}\)=1,69

\(_{\widehat{C}}\)=90-\(\widehat{B}\)=90-62=28\(^0\)

sinC=\(\dfrac{AB}{BC}\)\(\Rightarrow\)BC=\(\dfrac{AB}{sinC}\)=\(\dfrac{3,6}{sin28}\)=7,67

mà:CH=BC-BH=7,67-1,69=5,98

AC=\(\sqrt{BC^2-AB^2}\)(pytago)=\(\sqrt{7,67^2-3,6^2}\)=6.77

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)