Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ADC và tam giác BKC có:
\(\hept{\begin{cases}\widehat{C}\text{ chung}\\\widehat{BKC}=\widehat{ADC}\left(=90^{\text{o}}\right)\end{cases}}\Rightarrow\Delta ADC\approx\Delta BKC\)(g-g)
b) Xét tam giác BDM và tam giác BDH có :
\(\hept{\begin{cases}BD\text{ chung}\\\widehat{BDM}=\widehat{BDH}\left(=90^{\text{o}}\right)\\MD=DH\end{cases}}\Rightarrow\Delta BDM=\Delta BDH\left(c.g.c\right)\)
=> \(\widehat{BMD}=\widehat{BHD}\left(\text{góc tương ứng}\right)\)
=> \(\Delta MBH\text{ cân tại B}\)
c) Xét tam giác AHK và tam giác BMD có :
\(\hept{\begin{cases}\widehat{BMD}=\widehat{AHK}\left(=\widehat{BHD}\right)\\\widehat{BDM}=\widehat{HKA}\left(=90^{\text{o}}\right)\end{cases}\Rightarrow\Delta AKH\approx\Delta BMD\left(g-g\right)}\)
=> \(\Rightarrow\widehat{DBM}=\widehat{KAH}\text{ hay }\widehat{CBM}=\widehat{CAM}\)
a: Xét ΔAHC vuông tại H và ΔBKC vuông tại K có
góc C chung
Do đó: ΔAHC\(\sim\)ΔBKC
b: Ta có: ΔAHC\(\sim\)ΔBKC
nên HC/CK=AC/BC
=>6/CK=10/12=5/6
=>CK=7.2(cm)
a, Xét Δ AHC và Δ BKC, có :
\(\widehat{AHC}=\widehat{BKC}=90^o\)
\(\widehat{ACH}=\widehat{BCK}\) (góc chung)
=> Δ AHC ∾ Δ BKC (g.g)
b,
Ta có : AB = AC (Δ ABC cân tại A)
Mà AB = 10 (cm)
=> AC = 10 (cm)
Ta có :
Δ ABC cân tại A
AH là đường cao
=> AH là đường trung trực
=> 2HC = BC
=> 2HC = 12
=> HC = 6 (cm)
Ta có : Δ AHC ∾ Δ BKC (cmt)
=> \(\dfrac{AC}{BC}=\dfrac{HC}{KC}\)
=> \(\dfrac{10}{12}=\dfrac{6}{KC}\)
=> \(KC=\dfrac{12.6}{10}=7,2\left(cm\right)\)
Xét Δ BKC vuông tại C, có :
\(S_{\Delta_{BCK}}=\dfrac{1}{2}.CK.BC\)
=> \(S_{\Delta_{BCK}}=43,2\left(cm^2\right)\)
a) Xét tam giác BKC và CHB có:
góc B= góc C (tính chất tam giác cân)
góc BKC = góc BHC = 90 độ
=> Tam giác BKC đồng dạng tam giác CHB
=> \(\frac{BK}{CH}=\frac{BC}{BC}=1=k\)
b) Tam giác BHA đồng dạng tam giác CKA (g-g)
=> \(\frac{HA}{AK}=\frac{BA}{AC}=1\)
=> \(\frac{AK}{AB}=\frac{AH}{AC}\)
=> KH//BC (Định lí Ta - lét đảo)
c) Ta có theo hệ quả Ta-let:
\(\frac{AK}{AB}=\frac{KH}{BC}=>\frac{AK}{b}=\frac{KH}{a}=>KH=\frac{a.AK}{b}\)
Ta có: AK2+KC2=b2 (1)
KC2+KB2=a2 => KC2+(b-AK)2=a2 =>KC2-2b.AK+AK2=a2 (2)
Trừ 2 cho 1, ta có: -2b.AK=a2-b2 =>\(AK=\frac{a^2-b^2}{-2b}\)
Từ đó => \(KH=\frac{a\times\frac{a^2-b^2}{-2b}}{b}\)
a)Hai tam giác vuông \(\Delta AHC\approx\Delta BKC\)vì có chung góc nhọn C
b) Vì tam giác AHC đồng dạng tam giác BKC nên
\(\frac{AH}{BK}=\frac{HC}{KC}=\frac{AC}{BC}=\frac{4}{3}\)
Theo định lý Pytago ta có
\(AH=\sqrt{8^2-3^2}=\sqrt{55}\)
\(\frac{AH}{BK}=\frac{\sqrt{55}}{BK}=\frac{4}{3}\)
\(\Rightarrow BK=\frac{3\sqrt{55}}{4}\)
Theo Pytago ta có
\(KC=\sqrt{6^2-\left(\frac{3\sqrt{55}}{4}\right)^2}=\frac{9}{4}\left(cm\right)\)
\(KA=8-\frac{9}{4}=\frac{23}{4}\left(cm\right)\)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)
BI là phân giác của góc ABH
=>IA/AB=IH/BH
=>IA/5=IH/3=(IA+IH)/(5+3)=12/8=1,5
=>IA=7,5cm; IH=4,5cm
c: góc BAK+góc CAK=90 độ
góc BKA+góc HAK=90 độ
mà góc CAK=góc HAK
nên góc BAK=góc BKA
=>BI vuông góc AK
Xet ΔBAK có
BI,AI là đường cao
=>I là trực tâm
=>IK vuông góc AB
=>IK//AC
a)Tam giác KBC=tam giácHCB(cạnh huyền góc nhọn)
=>BH=CK ; BK=CH
Mà AB=AC=>AK=KH=>Tam giác AKH cân tại A
=>Góc AKH=Góc KBC mà 2 góc đồng vị
=>KH//BC=>KHCB là hình thang,có BH=CK
=>KHCB là hình thang cân
b)Tứ giác KIBM có:KH=BM ; KH//BM
=>KHBM là hình bình hành
=>KB=HM
Mà HC=KB
=>HC=MH=> Tam giác HMC cân tại H
c)Để A,O,M thẳng hàng thì tam giác ABC phải là tam giác đều (bạn tự chứng minh nha)
Chúc bạn học tốt!!
b) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có
\(\widehat{KBC}=\widehat{HCB}\)(ΔBAC cân tại A)
Do đó: ΔBKC\(\sim\)ΔCHB(g-g)
a) Áp dụng định lí Pytago vào ΔBKC vuông tại K, ta được:
\(BC^2=BK^2+CK^2\)
\(\Leftrightarrow CK^2=BC^2-BK^2=5^2-3^2=16\)
hay CK=4(cm)
Diện tích tam giác BKC là:
\(S_{BKC}=\dfrac{BK\cdot KC}{2}=\dfrac{3\cdot4}{2}=\dfrac{12}{2}=6\left(cm^2\right)\)