Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có : AB ⊥ AC tại A ( gt )
CD ⊥ AC tại C ( gt )
=> AB//CD ( Quan hệ từ vuông góc đến song song )
b) Kéo dài CD ( như hình vẽ ).
Có : Góc ACB + Góc C1 = 180o ( Tính chất 2 góc kề bù )
90o + Góc C1 = 180o ( Thay số )
Góc C1 = 90o
Có : Góc C1 + Góc C2 = Góc ACE ( Tính chất cộng góc )
90o + Góc C2 = 140o ( Thay số )
90o + Góc C2 = 50o
Có : Góc C2 + Góc CEF = 50o + 130o = 180o
Mà 2 góc này nằm ở vị trí phía trong cùng.
=> CD//EF ( dhnb )
a: Xét ΔBAD có BA=BD
nên \(\widehat{BAD}=\widehat{BDA}\)
b: \(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{HAD}+\widehat{BDA}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của góc HAC
c: Xét ΔAHD vuông tại H và ΔAKD vuôg tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)
Do đó: ΔAHD=ΔAKD
Suy ra: AH=AK
a) Ta có:
mOn=90omOn=90o
mà xOm+mOn+x′On=180oxOm+mOn+x′On=180o
⇒ xOm+90o+x′On=180oxOm+90o+x′On=180o
⇒ xOm+x′On=90oxOm+x′On=90o
⇒ (4x−10o)+(3x−5o)=90o(4x−10o)+(3x−5o)=90o
⇒ 4x−10o+3x−5o=90o4x−10o+3x−5o=90o
⇒ (4x+3x)+(−10o−5o)=90o(4x+3x)+(−10o−5o)=90o
⇒ 7x−15o=90o7x−15o=90o
⇒ 7x=105o7x=105o
⇒ x=15x=15
⇒ xOm=4.15o−10o=50oxOm=4.15o−10o=50o
x′On=90o−50o=40ox′On=90o−50o=40o
b) Ta có:
xOtxOt và nOx′nOx′ là 2 góc đối đỉnh
⇒ Ot là tia đối On (1)
mà tOy=90otOy=90o
⇒ Oy là tia đối Om (2)
Từ (1), (2) ⇒ mOnmOn và tOytOy là 2 góc đối đỉnh
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau