K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2021

\(M=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\left|2-\sqrt{5}\right|}-\dfrac{2}{\left|2+\sqrt{5}\right|}\)

\(=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)

\(=\dfrac{8}{1}=8\)

 

3 tháng 7 2021

Lm ơn giúp mik đii mà mik bt ơn bn đó nhiều lắm . Mik đang rất cần

NV
27 tháng 7 2021

Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC

\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)

Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều

\(\Rightarrow ED=R\)

\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)

\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\) 

Áp dụng định lý talet:

\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)

\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\) 

\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)

\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)

\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)

Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)

\(\Rightarrow\Delta ABC\) đều

NV
27 tháng 7 2021

undefined

DD
14 tháng 10 2021

1.3 Giải phương trình: 

a) \(\sqrt{2x+3}=1+\sqrt{2}\)(ĐK: \(x\ge-\frac{3}{2}\)

\(\Leftrightarrow2x+3=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\)

\(\Leftrightarrow2x=2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{2}\)(tm) 

b) \(\sqrt{x+1}=\sqrt{5}+3\)(ĐK: \(x\ge-1\)

\(\Leftrightarrow x+1=\left(\sqrt{5}+3\right)^2=14+6\sqrt{5}\)

\(\Leftrightarrow x=13+6\sqrt{5}\)(tm) 

c) \(\sqrt{3x-2}=2-\sqrt{3}\)(ĐK: \(x\ge\frac{2}{3}\))

\(\Leftrightarrow3x-2=\left(2-\sqrt{3}\right)^2=7-4\sqrt{3}\)

\(\Leftrightarrow x=\frac{9-4\sqrt{3}}{3}\)(tm) 

1.4: Phân tích thành nhân tử: 

a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)

b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)

\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)

3 tháng 9 2021

Bài 2a 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{256}{25}\)cm 

-> BC = HB + CH = \(25+\frac{256}{25}=\frac{881}{25}\)cm 

Áp dụng định lí Pytago của tam giác ABH vuông tại H 

\(AB=\sqrt{AH^2+HB^2}=\sqrt{881}\)cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A 

\(AC=\sqrt{BC^2-AB^2}=18,9...\)cm 

3 tháng 9 2021

Bài 2c 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : 

\(AH^2=HB.HC=3.4=12\Rightarrow AH=2\sqrt{3}\)cm 

Theo định lí Pytago tam giác AHB vuông tại H

\(AB=\sqrt{AH^2+HB^2}=\sqrt{21}\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{12}=\frac{1}{21}+\frac{1}{AC^2}\Rightarrow AC=2\sqrt{7}\)cm 

29 tháng 8 2021

a, \(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)ĐK : \(x\ge0;x\ne1\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b, \(B=\frac{3x-4}{x-2\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{\sqrt{x}-1}{2-\sqrt{x}}\)ĐK : \(x>0;x\ne4\)

\(=\frac{3x-4-\left(x-4\right)-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{3x-4-x+4-x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)

29 tháng 8 2021

c, \(Q=\frac{3}{\sqrt{a}-3}+\frac{2}{\sqrt{a}+3}+\frac{a-5\sqrt{a}-3}{a-9}\)ĐK : \(a\ge0;a\ne9\)

\(=\frac{3\sqrt{a}+9+2\sqrt{a}-6+a-5\sqrt{a}-3}{a-9}=\frac{a}{a-9}\)

d, \(B=\frac{x}{x-4}-\frac{1}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\)ĐK : \(x\ge0;x\ne4\)

\(=\frac{x}{x-4}+\frac{\sqrt{x}+2}{x-4}+\frac{\sqrt{x}-2}{x-4}=\frac{x+2\sqrt{x}}{x-4}=\frac{\sqrt{x}}{\sqrt{x}-2}\)

22 tháng 8 2021

a, Thay x =  vào A ta được : \(A=\frac{3}{3-2}=3\)

b, Với \(x\ge0;x\ne4\)

\(B=\frac{3}{\sqrt{x}+2}+\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{\sqrt{x}-10}{x-4}\)

\(=\frac{3\sqrt{x}-6+x+2\sqrt{x}-\sqrt{x}+10}{x-4}=\frac{4\sqrt{x}+4+x}{x-4}\)

\(=\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}-2}\)(đpcm)

22 tháng 8 2021

em cảm ơn anh cs thể kết bạn vs anh đc ko

 j