Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau
Giải:
Do \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) \(=2015\)
Nên \(2016a+13b-1\) và \(2016^a+2016a+b\) là 2 số lẻ \((*)\)
Ta xét 2 trường hợp:
Trường hợp 1: Nếu \(a\ne0\) thì \(2016^a+2016a\) là số chẵn
Do \(2016^a+2016a+b\) lẻ \(\Rightarrow b\) lẻ
Với \(b\) lẻ \(\Rightarrow13b-1\) chẵn do đó \(2016a+13b-1\) chẵn (trái với \((*)\))
Trường hợp 2: Nếu \(a=0\) thì:
\(\left(2016.0+13b-1\right)\left(2016^0+2016.0+b\right)\) \(=2015\)
\(\Leftrightarrow\left(13b-1\right)\left(b+1\right)=2015=1.5.13.31\)
Do \(b\in N\Rightarrow\left(13b-1\right)\left(b+1\right)=5.403=13.155\) \(=31.65\)
Và \(13b-1>b+1\)
\(*)\) Nếu \(b+1=5\Rightarrow b=4\Rightarrow13b-1=51\) (loại)
\(*)\) Nếu \(b+1=13\Rightarrow b=12\Rightarrow13b-1=155\) (chọn)
\(*)\) Nếu \(b+1=31\Rightarrow b=30\Rightarrow13b-1=389\) (loại)
Vậy \(\left(a,b\right)=\left(0;12\right)\)
\(3^{x+1}+3^{x+3}=810\)
\(\Leftrightarrow3^{x+1}+3^{x+1}.3^2=810\)
\(\Leftrightarrow3^{x+1}.10=810\)
\(\Leftrightarrow3^{x+1}=81=3^4\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
Ta có : a song song với b
=> Góc A = Góc B = 90độ
Hay x = 90 độ
=> Góc D + Góc C = 180độ ( 2 góc trong cùng phía )
=> y + 130 độ = 180 độ
=> y = 50 độ
Vẽ Cx song song với Am(1), ta được :
=> Góc mAC + Góc ACx = 180 độ
=> Góc mAC + Góc BCA + Góc BCx = 180 độ
Hay Góc BCx = 180 độ - 45 độ - 60 độ = 75 độ
Vì Góc nBC + Góc BCx = 180 độ ( 75 độ + 105 độ = 180 độ )
Mà Góc nBC và Góc BCx là 2 góc trong cùng phía
Nên ta được Bn song song với Cx (2)
Từ (1) và (2) => Bn song song với Am
B=(1/4.9+1/9.14+...+1/44.49).1-3-5-...-49/89
B=1/5(1/4-1/9+1/9-1/14+...+1/44-1/49).1-(3+5+...+49)/89
B=1/5(1/4-1/49).1-24.52:2/89
B=9/196.-7
B=-9/28
Ta có \(\frac{1-3-5-..-49}{89}=\frac{1-\left(3+5+7+...+49\right)}{89}\)
\(=\frac{1-\left[\left(49-3\right):2+1\right].\left(\frac{49+3}{2}\right)}{89}=\frac{1-624}{89}=-7\)
Lại có \(\frac{1}{4.9}+\frac{1}{9.14}+....+\frac{1}{44.49}=\frac{1}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{44.49}\right)\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right)=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)=\frac{1}{5}.\frac{45}{196}=\frac{9}{196}\)
Khi đó \(B=\frac{9}{196}.\left(-7\right)=-\frac{9}{28}\)
Bài 2 :
\(M=\left(-6x^2y\right)\left(-\dfrac{2}{3}xy^2\right)^2=\left(-6x^2y\right)\left(\dfrac{4}{9}x^2y^4\right)=-\dfrac{8}{3}x^4y^5\)
hệ số : -8/5 ; biến x^4y^5 ; bậc 5
b, Thay x = -1 ; y = 2 ta được
\(=-\dfrac{8}{3}.1.32=-\dfrac{256}{3}\)
Bài 4 :
a, \(M=\left(-\dfrac{3}{4}x^4y\right)\left(\dfrac{2}{9}x^2y^2\right)=-\dfrac{1}{6}x^6y^3\)
b, phần hệ số -1/6
phần biến x^6y^3
bậc 6