Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.15:
EF vuông góc MH
NP vuông góc MH
Do đó: EF//NP
3.17:
góc yKH+góc H=180 độ
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Ky//Hx
Gọi chiều dài là a(m)
=> Chiều dài là \(\dfrac{5400}{a}\left(m\right)\)
Theo đề bài ta có: \(\dfrac{5400}{a}:a=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{5400}{a^2}=\dfrac{3}{2}\)
\(\Rightarrow a^2=3600\Rightarrow a=60\left(m\right)\)
Vậy chiều rộng là 60m, chiều dài là \(\dfrac{5400}{a}=\dfrac{5400}{60}=90\left(m\right)\)
Chu vi hình chữ nhật là: \(\left(90+60\right).2=300\left(m\right)\)
3.14:
Ta thấy $\widehat{xNM}=\widehat{xQP}=45^0$. Mà 2 góc này ở vị trí đồng vị nên $MN\parallel PQ$
3.15
$EF\parallel NP$ do cùng vuông góc với $MH$
3.16: Bạn tự vẽ hình nhé.
3.17:
Ta thấy $\widehat{yKH}+\widehat{KHx}=130^0+50^0=180^0$. Mà 2 góc này ở vị trí trong cùng phía nên $Ky\parallel Hx$
`#040911`
`3.11`
Vì \(\widehat{x'AB}=\widehat{ABy}=60^0\)
Mà `2` góc này nằm ở vị trí sole trong
`=>` \(xx'\text {//}yy'\) `(\text {tính chất 2 đt' //})`
`3.12`
Vì \(\left\{{}\begin{matrix}\text{HK }\bot\text{ }a\\\text{HK }\bot\text{ }b\end{matrix}\right.\)
`=> \text {a // b} (\text {tính chất 2 đt' //}).`
Bài 5:
f(x) có 1 nghiệm x - 2
=> f (2) = 0
\(\Rightarrow a.2^2-a.2+2=0\)
\(\Rightarrow4a-2a+2=0\)
=> 2a + 2 = 0
=> 2a = -2
=> a = -1
Vậy:....
P/s: Mỗi lần chỉ đc đăng 1 câu hỏi thôi! Bạn vui lòng đăng bài hình trên câu hỏi khác nhé!
a)Ta có △MIP cân tại M nên ˆMNI=ˆMPIMNI^=MPI^
Xét △MIN và △MIP có:
ˆNMI=ˆPMINMI^=PMI^
MI : cạnh chung
ˆMNI=ˆMPIMNI^=MPI^
Nên △MIN = △MIP (c.g.c)
b)Gọi O là giao điểm của EF và MI
Vì △MNP là tam giác cân và MI là đường phân giác của △MIP
Suy ra MI đồng thời là đường cao của △MNP
Nên ˆMOE=ˆMOF=90oMOE^=MOF^=90o
Xét △MOE vuông tại O và △MOF vuông tại O có:
OM : cạnh chung
ˆEMO=ˆFMOEMO^=FMO^(vì MI là đường phân giác của △MIP và O∈∈MI)
Suy ra △MOE = △MOF (cạnh góc vuông – góc nhọn kề)
Nên ME = MF
Vậy △MEF cân
tham khảo
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
\(\dfrac{x}{2}=\dfrac{y}{3}\text{ và }x+y=50\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2 = y/3 = (x+y)/(2 + 3) = 50/5 = 10`
`=> x/2 = y/3 = 10`
`=> x = 10*2 = 20; y = 3*10 = 30`
Vậy, `x = 20; y = 30`
`b)`
\(\dfrac{x}{2}=\dfrac{y}{3}\text{ và }5x+4y=110\)
Ta có:
`x/2 = y/3` `=> (5x)/10 = (4y)/12`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(5x)/10 = (4y)/12 = (5x+4y)/(10 + 12) = 110/22 = 5`
`=> x/2 = y/3 = 5`
`=> x = 2*5 = 10; y = 3*5 = 15`
Vậy, `x = 10; y = 15`
`c)`
\(5x=11y\text{ và }2x+3y=37\)
Ta có:
`5x = 11y -> x/11 = y/5 -> (2x)/22 = (3y)/15`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(2x)/22 = (3y)/15 = (2x+3y)/(22+15) = 37/37 = 1`
`=> x/11 = y/5 = 1`
`=> x = 11; y = 5`
Vậy, `x = 11; y = 5`
`d)`
\(\dfrac{x}{2}=\dfrac{y}{1}\text{và }x+y-63=0\)
Ta có: `x + y - 63 = 0 -> x + y = 63`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2 = y/1 = (x+y)/(2+1) = 63/3 = 21`
`=> x/2 = y/1 = 21`
`=> x = 21*2 =42; y = 21`
Vậy, `x = 42; y = 21.`
`2,`
`a)`
\(\dfrac{a}{14}=\dfrac{b}{2}=\dfrac{c}{4}\text{ và }a+b+c=5\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`a/14 = b/2 = c/4 = (a+b+c)/(14+2+4)=5/20=1/4=0,25`
`=> a/14 = b/2 = c/4 = 0,25`
`=> a = 14*0,25 = 3,5` `; b = 2*0,25 = 0,5;` `c = 4*0,25 = 1`
Vậy, `a = 3,5`; `b = 0,5`; `c = 1`
`b)`
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{8}\text{ và }7a+3b-5c=7\)
Ta có:
`a/3 = b/5 = c/8 => (7a)/21 = (3b)/15 = (5c)/40`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(7a)/21 = (3b)/15 = (5c)/40 = (7a + 3b - 5c)/(21 + 15 - 40)=7/-4 = -1,75`
`=> a/3 = b/5 = c/8 = -1,75`
`=> a = 3*(-1,75) = -5,25`
`b = 5*(-1,75) = -8,75`
`c = 8*(-1,75) = -14`
Vậy, `a = -5,25; b = -8,75`; `c = -14`
`c)`
\(\dfrac{a}{3}=\dfrac{b}{8}=\dfrac{c}{5}\text{và }3a+b-2c=14\)
Ta có:
`a/3 = b/8 = c/5 -> (3a)/9 = b/8 = (2c)/10`
Câu này bạn làm tương tự nha
`d)`
\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{7}=\dfrac{c}{5}\text{ và }3a+5c-7b=30\)
Ta có:
`a/3 = b/2 -> a/21 = b/14`/
`b/7 = c/5 -> b/14 = c/10`
`=> a/21 = b/14 = c/10`
`=> (3a)/63 = (7b)/98 = (5c)/50`
Câu này bạn cũng làm tương tự.
Bài 2:
a, A= | 2x - \(\dfrac{1}{4}\) | + 1
Ta có | 2x - \(\dfrac{1}{4}\) | ≥ 0 (∀x ∈ R)
⇒| 2x - \(\dfrac{1}{4}\) | + 1 ≥ 1
⇒ GTNN của A là 1
b, B= | 5 - \(\dfrac{3}{2}\)x | - 3
Ta có | 5 - \(\dfrac{3}{2}\)x | ≥ 0 (∀x ∈ R)
⇒ | 5 - \(\dfrac{3}{2}\)x | - 3 ≥ -3
⇒ GTNN của B là -3
c, C= |x - 2020| + |y - 2022| + 1
Ta có |x - 2020| ≥ 0 (∀x ∈ R)
|y - 2022| ≥ 0 (∀y ∈ R)
⇒|x - 2020| + |y - 2022| ≥ 0 (∀x,y ∈ R)
⇒|x - 2020| + |y - 2022| + 1 ≥ 1
⇒ GTNN của C là 1
a) ∣ 2x-1/4 ∣≥0 ∀ x =>∣ 2x-1/4∣+1≥1
'=' xay ra <=> 2x-1/4=0 <=> x=1/8
b) tương tự a đc GTNN = -3 khi x=10/3
c)∣ x-2020 ∣ ≥0 ∀ x
∣ y-2022 ∣ ≥0 ∀ y
=>∣ x-2020 ∣+∣ y-2022 ∣ +1 ≥1 ∀ x,y
'=' xay ra <=> x-2020=0 <=>x=2020
y-2022=0 <=>y=2022