K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 5 2023

Lời giải:

ĐKXĐ: $x\geq 0; x\neq 4$
\(A=\left[\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}-1\right]:\left[\frac{(3-\sqrt{x})(3+\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+3)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right]\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)}{\sqrt{x}+3}=\frac{-3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{-(\sqrt{x}-2)}=\frac{3}{\sqrt{x}-2}\)

6:ĐKXĐ: x>=0; x<>1/25

BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)

=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)

=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)

7:

ĐKXĐ: x>=0

BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)

=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)

=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)

=>\(-\sqrt{x}-2>=0\)(vô lý)

8:

ĐKXĐ: x>=0; x<>9/4

BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)

=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)

=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)

TH1: 9căn x-14>0 và 2căn x-3<0

=>căn x>14/9 và căn x<3/2

=>14/9<căn x<3/2

=>196/81<x<9/4

TH2: 9căn x-14<0 và 2căn x-3>0

=>căn x>3/2 hoặc căn x<14/9

mà 3/2<14/9

nên trường hợp này Loại

9: 

ĐKXĐ: x>=0

\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)

=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)

=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)

=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)

10: 

ĐKXĐ: x>=0; x<>1/49

\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)

=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)

=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)

=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)

TH1: 6căn x-1>0 và 7căn x-1>0

=>căn x>1/6 và căn x>1/7

=>căn x>1/6

=>x>1/36

TH2: 6căn x-1<0 và 7căn x-1<0

=>căn x<1/6 và căn x<1/7

=>căn x<1/7

=>0<=x<1/49

30 tháng 8 2023

câu 9 nhầm đề bài r bạn

 

6 tháng 2 2022

ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

\(A=\left(\dfrac{3\sqrt{x}}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+13}{x+6\sqrt{x}+9}\)

\(=\left(\dfrac{3}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+13}{\left(\sqrt{x}+3\right)^2}\)

\(=\dfrac{3\sqrt{x}+9-2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}\)

\(=\dfrac{\sqrt{x}+13}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

Vậy...

d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)

\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)

\(=\dfrac{3\sqrt{x}}{x-3}\)

f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)

\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)

\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)

\(A=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+3}+\dfrac{3\sqrt{x}}{x-9}\right):\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{3x-9\sqrt{x}+3\sqrt{x}}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3x-6\sqrt{x}}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)

Ta có: \(P=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)

\(=\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+3}\right):\left(\dfrac{-\left(x-9\right)+x-4\sqrt{x}+4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}:\dfrac{-x+9+2x-4\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)

\(P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{2\sqrt{x}+7}{x-4}\right)\)

\(=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\left(\dfrac{x+2\sqrt{x}-x+\sqrt{x}+2-2\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-5}\)

\(=\dfrac{-x+8\sqrt{x}-15+\left(x-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{-x+8\sqrt{x}-15+x\sqrt{x}-2x-4\sqrt{x}+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{x\sqrt{x}-3x+4\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)

24 tháng 9 2021

\(ĐK:x\ge0;x\ne4\\ P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+1:\dfrac{x+2\sqrt{x}-x+\sqrt{x}+2-2\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-5}\\ P=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}-5\right)+\left(x-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\\ P=\dfrac{8\sqrt{x}-15-x+x\sqrt{x}-2x-4\sqrt{x}+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\\ P=\dfrac{x\sqrt{x}-3x+4\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)

a) Ta có: \(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)

\(=\dfrac{6\left(\sqrt{5}-1\right)}{4}+\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{4}}-2\sqrt{5}\)

\(=\dfrac{3}{2}\left(\sqrt{5}-1\right)+\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-2\sqrt{5}\)

\(=\dfrac{3}{2}\sqrt{5}-\dfrac{3}{2}-2\sqrt{5}+\dfrac{\sqrt{5}+1}{2}\)

\(=-\dfrac{1}{2}\sqrt{5}-\dfrac{3}{2}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\)

=-1

 

Bài 1: 

a) Thay \(x=\dfrac{1}{4}\)vào B, ta được:

\(B=1:\left(\dfrac{1}{4}\cdot\dfrac{1}{2}+27\right)=1:\left(27+\dfrac{1}{8}\right)=\dfrac{8}{217}\)

b) Ta có: \(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{x-9+\sqrt{x}+3-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-6-x+2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

c) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow3-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 3\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne4\end{matrix}\right.\)

a:

\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\dfrac{9-x+x-9-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)

b: Khi x=7-4căn 3 thì 

\(A=\dfrac{3}{2-\sqrt{3}-2}=\dfrac{3}{-\sqrt{3}}=-\sqrt{3}\)

c: A=3

=>căn x-2=1

=>x=9(loại)

29 tháng 6 2023

\(a,A=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\left(dkxd:x\ne4,x\ge0,x\ne9\right)\)

\(=\dfrac{x-3\sqrt{x}-x+9}{x-9}:\dfrac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{9-x+x-9-x+4\sqrt{x}-4}\)

\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\sqrt{x}-3}.\dfrac{\sqrt{x}-2}{4\sqrt{x}-4-x}\)

\(=\dfrac{-3\left(\sqrt{x}-2\right)}{-\left(x-4\sqrt{x}+4\right)}\)

\(=\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

\(b,x=7-4\sqrt{3}\Rightarrow A=\dfrac{3}{\sqrt{7-4\sqrt{3}}-2}=\dfrac{3}{\sqrt{\left(\sqrt{3}-2\right)^2}-2}=\dfrac{3}{\left|\sqrt{3}-2\right|-2}=\dfrac{3}{-\sqrt{3}+2-2}=\dfrac{\sqrt{3^2}}{-\sqrt{3}}=-\sqrt{3}\)

\(c,A=3\Rightarrow\dfrac{3}{\sqrt{x}-2}=3\\ \Rightarrow\dfrac{3-3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=0\\ \Rightarrow3-3\sqrt{x}+6=0\\ \Rightarrow-3\sqrt{x}=-9\\ \Rightarrow\sqrt{x}=3\\ \Rightarrow x=9\left(ktm\right)\)

Vậy không có giá trị x thỏa mãn đề bài.

a) Ta có: \(M=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{-\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-3}{\sqrt{x}-2}\)