Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f (1) = (1-1). f (1) = (1+4).f (1+8)
\(\Rightarrow\)0 = 5 . f (9) Vậy 9 là 1 nghiệm của đa thức
f (-4) = ( -4-1 ) . f (-4) = (-4+4) . f (-4+8)
\(\Rightarrow\)-5 . f (-4) = 0 vậy -4 là một nghiệm của đa thức
Do đó f (x) có 2 nghiệm là 9 và -4.
Còn nhập TTĐ thì mình ko biết
f (1) = (1-1). f (1) = (1+4).f (1+8)
⇒0 = 5 . f (9) Vậy 9 là 1 nghiệm của đa thức
f (-4) = ( -4-1 ) . f (-4) = (-4+4) . f (-4+8)
⇒-5 . f (-4) = 0 vậy -4 là một nghiệm của đa thức
Do đó f (x) có 2 nghiệm là 9 và -4.
Còn nhập TTĐ thì mình ko biết
Ta có: \(\frac{x+1}{x}=\pm1+\frac{1}{x}\)
Ta thấy: \(\pm1+\frac{1}{x}\) lớn nhất
\(\Leftrightarrow\frac{1}{x}\) lớn nhất
\(\Leftrightarrow\) x nhỏ nhất
\(\Leftrightarrow x=\pm1\)
*Chú ý: Có những chỗ phải viết kí hiệu của giá trị tuyệt đối nhưng mình không viết được. Bạn tự hiểu nhé!
Mong bạn thông cảm và chúc bạn học giỏi!
ta co | x - 1/3| + | x-y| = 0 (1)
mà |x - 1/3| >= 0 với mọi x , |x-y| >= 0 với mọi x,y => | x - 1/3| + | x-y| >=0 với mọi x,y (2) từ (1) và (2) => | x - 1/3 | = 0 và | x-y| =0
=> x - 1/3 =0 và x-y = 0 => x = 1/3 và x = y => x = y = 1/3
nhớ tích mk nhé
Là khoảng cách hay số đơn vị từ điểm x đến điểm 0 trên trục số
Gía trị tuyệt đối của số hữu tỉ x là k/c từ điểm x tới điểm số 0 trên trục số.
Với mọi \(x\in Q\) , ta luôn có \(\left|x\right|\ge0\) ; \(\left|x\right|=\left|-x\right|\) và \(\left|x\right|\ge x\)
Giá trị tuyệt đối của số hữu tỉ x được xác định là phần nguyên của x.