Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AB=AC
hay ΔABC cân tại A
b: XétΔABC có
AD là đường cao
CH là đường cao
AD cắt CH tại D
Do đó: D là trực tâm của ΔABC
=>BD vuông góc với AC
Giải:
Do \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) \(=2015\)
Nên \(2016a+13b-1\) và \(2016^a+2016a+b\) là 2 số lẻ \((*)\)
Ta xét 2 trường hợp:
Trường hợp 1: Nếu \(a\ne0\) thì \(2016^a+2016a\) là số chẵn
Do \(2016^a+2016a+b\) lẻ \(\Rightarrow b\) lẻ
Với \(b\) lẻ \(\Rightarrow13b-1\) chẵn do đó \(2016a+13b-1\) chẵn (trái với \((*)\))
Trường hợp 2: Nếu \(a=0\) thì:
\(\left(2016.0+13b-1\right)\left(2016^0+2016.0+b\right)\) \(=2015\)
\(\Leftrightarrow\left(13b-1\right)\left(b+1\right)=2015=1.5.13.31\)
Do \(b\in N\Rightarrow\left(13b-1\right)\left(b+1\right)=5.403=13.155\) \(=31.65\)
Và \(13b-1>b+1\)
\(*)\) Nếu \(b+1=5\Rightarrow b=4\Rightarrow13b-1=51\) (loại)
\(*)\) Nếu \(b+1=13\Rightarrow b=12\Rightarrow13b-1=155\) (chọn)
\(*)\) Nếu \(b+1=31\Rightarrow b=30\Rightarrow13b-1=389\) (loại)
Vậy \(\left(a,b\right)=\left(0;12\right)\)
1:gia tri x<0...
2:gia tri x thoa man...
3:gia tri a biet...
4:-2,1
5:26/64...
6:gia tri bieu thuc (2/5)7...
7:1-2/3...
8:4 va 3/4
10:gia tri bieu thuc :24+....
nếu không phải thì bạn đổi 8 rồi tới 7 nhé !!!!!!
b: |2x-1|<5
=>2x-1>-5 và 2x-1<5
=>2x>-4 và 2x<6
=>-2<x<3
mà x là số nguyên dương
nên \(x\in\left\{1;2\right\}\)
I want to make friends with the original, but this is a program so you do not submit HOC24 information was offline nonsense.
I hope you will change and understand for yourselves.( Tran Vo Ha Thi)
Good luck
Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)
Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)
Dấu \("="\) xảy ra khi:
\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)
Vậy \(1\le x\le5.\)
Cho mk thêm cái ạ:
\(x\in\left\{1;2;3;4;5\right\}\)
Vậy \(x\in\left\{1;2;3;4;5\right\}\)
\(\dfrac{2}{5}< \left|x-\dfrac{7}{5}\right|< \dfrac{3}{5}\Rightarrow0,4< \left|x-\dfrac{7}{5}\right|< 0,6\)
\(\Rightarrow\left|x-\dfrac{7}{5}\right|=\dfrac{1}{2}\Rightarrow x-\dfrac{7}{5}=\left[{}\begin{matrix}\dfrac{1}{2}\\-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x=\left[{}\begin{matrix}\dfrac{1}{2}+\dfrac{7}{5}\\-\dfrac{1}{2}+\dfrac{7}{5}\end{matrix}\right.\Rightarrow x=\left[{}\begin{matrix}\dfrac{19}{10}\\\dfrac{9}{10}\end{matrix}\right.\)
Vậy \(x=\dfrac{19}{10}\) hoặc \(x=\dfrac{9}{10}\)
\(\dfrac{2}{5}< \left|x-\dfrac{7}{5}\right|< \dfrac{3}{5}\)
\(\Rightarrow0,4< \left|x-1,4\right|< 0,6\)
\(\Rightarrow\left|x-1,4\right|=0,5\)
\(\Rightarrow x-1,4=\left[{}\begin{matrix}0,5\\-0,5\end{matrix}\right.\)
\(\Rightarrow x=\left[{}\begin{matrix}0,5+1,4\\-0,5+1,4\end{matrix}\right.\)
\(\Rightarrow x=\left[{}\begin{matrix}1,9\\0,9\end{matrix}\right.\)
Vậy x = 1,9 hoặc x = 0,9