Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(7n+10;5n+7)=a
Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a
=> 35n+50 chia hết cho a (1)
5n+7 chia hết cho a => 7(5n+7) chia hết cho a
=> 35n + 49 chia hết cho a (2)
Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a
=> 1 chia hết cho a
=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau
tick ủng hộ nha
Bạn xem lại đề nhé.
Hai số nguyên tố cùng nhau có ƯCLN là 1
Mà 2 số chẵn liên tiếp luôn cùng chia hết cho 2 > 1
=> 2 số chẵn liên tiếp không nguyên tố cùng nhau
2 số lẻ liên tiếp hơn kém nhau 2 đơn vị suy ra ưcln chỉ có thể là 2 mà 2 số lẻ ko chia hết cho 2 nên 2 số lẻ liên tiếp có ưcln là 19(dpcm)
Ừ thì do n+1 và n+2 là 2 stn liên tiếp nên chúng luôn phải nguyên tố cùng nhau hoi
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
gọi d là ước chung của n và n + 4 .
suy ra n +4 - n = 4 cũng chia hết cho d
theo bài ra d lại là số lẻ vậy d chỉ có thể bằng 1
Ước chung của 2 số là 1 suy ra 2 số là 2 số nguyên tố cùng nhau
Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d
=>2k+1 chia hết cho d và 2k+3 chia hết cho d
=>(2k+1)-(2k+3) chia hết cho d
=>2 chia hết cho d
=>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2
Mà 2k+1 và 2k+3 là số lẻ
=>ƯCLN(2k+1,2k+3)=1
=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Gọi 2 số lẻ liên tiếp có dạng 2k+1 ; 2k+3 ( k thuộc N )
Gọi ƯCLN (2k+1;2k+3) = d
=> 2k+1 và 2k+3 đều chia hết cho d
=> 2k+3 - 2k - 1 chia hết cho d hay 2 chia hết cho d
Mà 2k+1 lẻ => d lẻ => d = 1
=> ƯCLN (2k+1;2k+3) = 1
=> 2k+1 và 2k+3 là 2 số nguyên tố cùng nhau
=> ĐPCM
k mk nha