K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

Biến đổi A=\(\left(x+y-z\right)^2+\left(x-1\right)^2+\left(y-2\right)^2-3\)

Vậy GTNN của A là -3 khi và chỉ khi x=1;y=2;z=3

1 tháng 4 2016

+2z2 chứ

NV
31 tháng 1 2019

\(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\)

\(\Rightarrow P\ge\dfrac{x+2y}{3x+y+5z}+\dfrac{y+2z}{3y+z+5x}+\dfrac{z+2x}{3x+x+5y}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{\left(x+2y\right)\left(3x+y+5z\right)}+\dfrac{\left(y+2z\right)^2}{\left(y+2z\right)\left(3y+z+5x\right)}+\dfrac{\left(z+2x\right)^2}{\left(z+2x\right)\left(3x+x+5y\right)}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{3x^2+2y^2+7xy+5xz+10yz}+\dfrac{\left(y+2z\right)^2}{3y^2+2z^2+7yz+5xy+10xz}+\dfrac{\left(z+2x\right)^2}{3z^2+2x^2+7xz+5yz+10xy}\)

\(\Rightarrow P\ge\dfrac{\left(x+2y+y+2z+z+2x\right)^2}{5\left(x^2+y^2+z^2\right)+22\left(xy+xz+yz\right)}\)

\(\Rightarrow P\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+12\left(xy+xz+yz\right)}\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+\dfrac{12\left(x+y+z\right)^2}{3}}\)

\(\Rightarrow P\ge1\)

\(\Rightarrow P_{min}=1\) khi \(x=y=z\)

30 tháng 12 2021

\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)

\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu \("="\Leftrightarrow x=y=z=1\)

30 tháng 12 2021

Em cảm ơn anh ạ! 

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duong-cmr-dfraca2bcdfracb2cadfracc2abgedfracabc2.4139278814936

31 tháng 8 2016

A=\(x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2008\)

A=\(\left(x^2+y^2+z^2+1-2xy+2xz-2x+2y-2z\right)+\left(y^2-4y+4\right)+2\left(z^2-2.\frac{3}{2}z+\frac{9}{4}\right)+1998,5\)A=\(\left(x-y+z-1\right)^2+\left(y-2\right)^2+2\left(z-\frac{3}{2}\right)^2+1998,5\)

vậy A min = 1998,5↔\(\begin{cases}x-y+z-1=0\\y-2=0\\z-\frac{3}{2}=0\end{cases}\)\(\begin{cases}x=z=1,5\\y=2\end{cases}\)

(thế wai nào thử lại vẫn sai z,thánh nào cao tay jup vs)

 

24 tháng 4 2019

Ta có 5x2+2xy+2y2=(2x+y)2+(x-y)2>=(2x+y)2

Khi đó P<=\(\frac{1}{2x+y}+\frac{1}{2y+z}+\frac{1}{2z+x}\)

Lại có \(\frac{1}{2x+y}=\frac{1}{x+x+y}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\right)\)

  1.  

     Tương tự \(\frac{1}{2y+z}\le\frac{1}{9}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{y}\right)\)

                      \(\frac{1}{2z+x}\le\frac{1}{9}\left(\frac{1}{z}+\frac{1}{x}+\frac{1}{z}\right)\)

Khi đó P<=\(\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{1}{3}\sqrt{3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\le\frac{\sqrt{3}}{3}\)

Dấu bằng xảy ra khi x=y=z=\(\frac{\sqrt{3}}{3}\)

HAY

24 tháng 4 2019

bài làm láo à ? sau 1 hồi trình bày thì dấu = khi \(x=y=z=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}\) ??

11 tháng 8 2017

a) \(B=-3x^2-4x+1\)

\(B=-\left(3x^2+4x-1\right)\)

\(B=-\left[\sqrt{3}x+2.\sqrt{3}x.+\dfrac{2\sqrt{3}}{3}+\left(\dfrac{2\sqrt{3}}{3}\right)^2-\left(\dfrac{2\sqrt{3}}{3}\right)^2-1\right]\)

\(B=-\left(\sqrt{3}x+\dfrac{2\sqrt{3}}{3}\right)^2+\dfrac{7}{3}\le\dfrac{7}{3}\)

\(Max_B=\dfrac{7}{3}\) khi \(x=\dfrac{-2}{3}\)

b) \(C\left(x\right)=x^4-10x^3+26x^2-10x+30\)

\(=\left(x^2\right)^2-2.x^2.5x+\left(5x\right)^2+x^2-2.x.5+5^2+5\)

\(=\left(x^2-5x\right)^2+\left(x-5\right)^2+5\)

\(C\left(y\right)=\left(y+1\right)\left(y+2\right)\left(y+3\right)\left(y+4\right)\)

Nhóm (y+1)(y+4)=t

Nhóm (y+2)(y+3)=t+2

Xong tìm Min được liền

c) Min=2010

d) Viết đề thiếu dấu, có vấn đề, xem lại

e) C= -[(x-y)2+2(x-y).7+72+x2-2.x.2+22-1945]

Xong tìm được Max

10 tháng 8 2017

@Nguyễn Quang Định @Phương An @Hoàng Lê Bảo Ngọc