K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2020

Nói chung là khó mà hiểu

7 tháng 8 2017

A =\(\frac{2010^{2008}+1}{2010^{2009}+1}\)\(\Rightarrow2010A=\frac{2010^{2009}+2010}{2010^{2009}+1}=1+\frac{2009}{2010^{2009}+1}\)
\(B=\frac{2010^{2007}+1}{2010^{2008}+1}\Rightarrow2010B=\frac{2010^{2008}+2010}{2010^{2008}+1}=1+\frac{2009}{2010^{2008}+1}\)
Vì 2009 = 2009( tử số bằng nhau); \(2010^{2009}+1>2010^{2008}+1\)( mẫu số của A>B)
=>  \(\frac{2010^{2008}+1}{2010^{2009}+1}< \frac{2010^{2007}+1}{2010^{2008}+1}\)

6 tháng 6 2016

 Không rõ bạn muốn so sánh tổng đã cho với cái gì ? Còn nếu như bạn Bibo Bobi so sánh các số hạng của tổng mà cho rằng theo thứ tự nhỏ dần thì không đúng đâu.Chẳng hạn ta thử so sánh 2008/2009 và 2009/2010. 
Nếu cả 2 phân số này cùng nhân với tích (2009*2010) thì lần lượt được 2008*2010 và 2009^2. 
Mà 2008*2010=(2009-1)*(2009+1)= 2009^2-1. 
Rõ ràng số trước nhỏ hơn số sau,vậy 2008/2009<2009/2010 tức là theo thứ tự lớn dần.

6 tháng 6 2016

Ta có: 4=1+1+1+1 = \(\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}\)\(=\frac{2008}{2009}+\frac{1}{2009}+\frac{2009}{2010}+\frac{1}{2010}+\frac{2010}{2011}+\frac{1}{2011}+\frac{2008}{2008}\)

Xét A=\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}\)

\(\frac{2009}{2009}+\frac{2010}{2010}+\frac{2011}{2011}+\frac{2008}{2008}+\frac{1}{2008}+\frac{1}{2008}+\frac{1}{2008}\)

Xét \(\frac{1}{2009}< \frac{1}{2008};\frac{1}{2010}< \frac{1}{2008};\frac{1}{2011}< \frac{1}{2008}\)

=> 4< A

19 tháng 1 2016

Có \(\frac{2009}{2010}<1\)

\(\frac{2010}{2009}>1\)

=> \(\frac{2009}{2010}<\frac{2010}{2009}\)

=> \(\frac{-2009}{2010}>\frac{2010}{-2009}\)

5 tháng 11 2015

Ta so sánh 2009/2010 và 2010/2009
Ta có 2009/2010<1<20010/2009
=>2009/2010<2010/2009 => -2009/2010 > 2010/- 2009

 

29 tháng 6 2018

a) Ta có:

\(9^{1945}-2^{1930}=...9-...4\) (Dấu hiệu số cuối của 1 lũy thừa)

                              \(=...5⋮5\)

\(\Rightarrow9^{1945}-2^{1930}⋮5\)

Vậy \(9^{1945}-2^{1930}⋮5\left(đpcm\right)\)

b) Ta có:

\(4^{2010}+2^{2014}=...6+...4\)

                              \(=...10⋮10\)

\(\Rightarrow4^{2010}+2^{2014}⋮10\)

Vậy \(4^{2010}+2^{2014}⋮10\left(đpcm\right)\)