Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(A=\frac{(x\sqrt{x}-4x)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)
ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}-4\neq 0\\ \sqrt{x}-2\neq 0\\ \sqrt{x}-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 16\\ x\neq 4\\ x\neq 1\end{matrix}\right.\)
\(A=\frac{x(\sqrt{x}-4)-(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{2}-2)(\sqrt{x}-1)}=\frac{(x-1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}\)
\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)(\sqrt{x}-4)}{2(\sqrt{x}-4)(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{\sqrt{x}+1}{2(\sqrt{x}-2)}\)
b.
Với $x$ nguyên, để $A\in\mathbb{Z}$ thì $\sqrt{x}+1\vdots 2(\sqrt{x}-2)}$
$\Rightarrow \sqrt{x}+1\vdots \sqrt{x}-2$
$\Leftrightarrow \sqrt{x}-2+3\vdots \sqrt{x}-2$
$\Leftrightarrow 3\vdots \sqrt{x}-2$
$\Rightarrow \sqrt{x}-2\in\left\{\pm 1;\pm 3\right\}$
$\Rightarrow x\in\left\{1;9;25\right\}$
Thử lại thấy đều thỏa mãn.
a: \(A=\dfrac{x\left(\sqrt{x}-4\right)-\left(\sqrt{x}-4\right)}{2x\sqrt{x}-8x-6x+24\sqrt{x}+4\sqrt{x}-16}\)
\(=\dfrac{\left(\sqrt{x}-4\right)\left(x-1\right)}{\left(\sqrt{x}-4\right)\left(2x-6\sqrt{x}+4\right)}=\dfrac{x-1}{2x-6\sqrt{x}+4}\)
\(=\dfrac{x-1}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{2\sqrt{x}-4}\)
b: Để A nguyên thì \(2\sqrt{x}+2⋮2\sqrt{x}-4\)
\(\Leftrightarrow2\sqrt{x}-4\in\left\{2;-2;6\right\}\)
hay \(x\in\left\{9;1;25\right\}\)
\(a,b,M=\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\left(x\ge0;x\ne0;x\ne1\right)\\ M=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{x}{\sqrt{x}+1}\\ M=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{x}{\sqrt{x}+1}\\ M=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{x}{\sqrt{x}+1}=\sqrt{x}\left(\sqrt{x}-1\right)\)
\(c,M=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}\\ =x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
\(M=\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\)
ĐKXĐ: \(x>0;x\ne1\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1}{x}\)
\(=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right).\dfrac{x}{\sqrt{x}+1}\)
\(=\dfrac{x-1}{x}.\dfrac{x}{\sqrt{x}+1}\)
\(=\sqrt{x}-1\)
a) ĐKXĐ:
\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\\rightarrow \left\{{}\begin{matrix}x>\sqrt{2}\\x>-\sqrt{2}\\x>0\end{matrix}\right.\\ \rightarrow x>\sqrt{2}\)
Vậy \(x>\sqrt{2}\)
b)
\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\\ =\left[\dfrac{\sqrt{x}.\left(\sqrt{x}+2\right)+\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{2\sqrt{x}}=\dfrac{x}{\sqrt{x}}=\dfrac{\sqrt{x}.\sqrt{x}}{\sqrt{x}}=\sqrt{x}\)
Vậy \(M=\sqrt{x}\)
a) ĐKXĐ:
\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}x>4\\x>-4\\x>0\end{matrix}\right.\\ \rightarrow x>4\)
Vậy \(x>4\)
a: ĐKXĐ: x>0; x<>1
b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)
c: A nguyên
=>x-1 thuộc {1;-1;2;-2}
=>x thuộc {2;3}
Lời giải:
Đặt \(\sqrt{x}=a(a\geq 0)\)
Khi đó:\(M=\frac{a^3-4a^2-a+4}{2a^3-14a^2+28a-16}\)
a) Điều kiện để M có nghĩa:
\(2a^3-14a^2+28a-16\neq 0\Leftrightarrow 2a^2(a-1)-12a(a-1)+16(a-1)\neq 0\)
\(\Leftrightarrow (a-1)(2a^2-12a+16)\neq 0\)
\(\Leftrightarrow (a-1)[2a(a-4)-4(a-4)]\neq 0\)
\(\Leftrightarrow 2(a-1)(a-2)(a-4)\neq 0\Leftrightarrow a\neq 1; a\neq 2; a\neq 4\)
Suy ra điều kiện để M có nghĩa là $x\geq 0; x\neq 1; x\neq 4; x\neq 16$
b)
\(M=\frac{a^3-4a^2-a+4}{2a^3-14a^2+28a-16}=\frac{a^2(a-4)-(a-4)}{2(a-1)(a-2)(a-4)}\)
\(=\frac{(a^2-1)(a-4)}{2(a-1)(a-2)(a-4)}=\frac{(a-1)(a+1)(a-4)}{2(a-1)(a-2)(a-4)}=\frac{a+1}{2(a-2)}=\frac{\sqrt{x}+1}{2(\sqrt{x}-2)}\)
c)
Để M nhận giá trị nguyên thì \(\sqrt{x}+1\vdots 2(\sqrt{x}-2)\)
\(\Rightarrow \sqrt{x}+1\vdots \sqrt{x}-2\)
\(\Rightarrow \sqrt{x}-2+3\vdots \sqrt{x}-2\)
\(\Rightarrow 3\vdots \sqrt{x}-2\Rightarrow \sqrt{x}-2\in\left\{\pm 1;\pm 3\right\}\)
\(\Rightarrow \sqrt{x}\in\left\{1; 3; 5\right\}\Rightarrow x\in\left\{1;9;25\right\}\)
Thử lại thấy đều thỏa mãn.