K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Dấu hiệu là điểm kiểm tra 15 phút toán của 30 bạn học sinh

Ở đây có 8 giá trị khác nhau

9 tháng 4 2021

lop 10 cung co thong ke nma day la bai lop 7 ban a :((

18 tháng 1 2018

Gọi tuổi con năm nay là x.

=> Tuổi cha năm nay là 10x.

(ĐK \(x,y\in N\)*)

+) Sáu năm nữa tuổi cha gấp 4 lần tuổi con :

Ta có pt : \(10x+6=\left(x+6\right)\cdot4\)

Giải pt này được \(x=3\) (TMĐK)

Vậy tuổi con năm nay là 3, tuổi cha năm nay là 30.

18 tháng 1 2018

cam on

NV
25 tháng 7 2020

Bận ăn cơm :(

Bạn nhầm vị trí điểm I với điểm K à?

Vậy mình nêu hướng giải thôi nhé, làm biếng quá

Dễ dàng chứng minh \(\Delta_vADK=\Delta_vBAI\Rightarrow\widehat{DAK}=\widehat{IBA}\)

\(\widehat{DAK}+\widehat{KAB}=90^0\Rightarrow\widehat{IBA}+\widehat{KAB}=90^0\Rightarrow AK\perp BI\)

Gọi E là trung điểm AB \(\Rightarrow CE//AK\) (hbh)

Gọi G là giao điểm BI và CE thì EG là đtb tam giác ABM (qua trung điểm E và song song cạnh đáy)

\(\Rightarrow\) G là trung điểm BM \(\Rightarrow CG\) là đường cao đồng thời là trung tuyến trong tam giác BCM

\(\Rightarrow\Delta BCM\) cân tại C \(\Rightarrow BC=CM=\sqrt{10}\)

\(AB=BC=\sqrt{10};AI=\frac{1}{2}AD=\frac{\sqrt{10}}{2}\)

\(\Rightarrow BI=\sqrt{AB^2+AI^2}=\frac{5\sqrt{2}}{2}\Rightarrow MB=\frac{AB^2}{BI}=2\sqrt{2}\)

\(\Rightarrow cos\widehat{MCB}=\frac{2BC^2-BM^2}{2BC^2}=\frac{3}{5}\)

\(\Rightarrow\) Viết được pt BC (qua C và tạo với đường thẳng CM đã biết 1 góc có \(cos=\frac{3}{5}\))

Tọa độ B là giao của BC và đường tròn tâm C bán kính BC có pt \(\left(x-2\right)^2+\left(y+2\right)^2=10\)

NV
25 tháng 7 2020

Nhân tiện hướng giải bài kia:

Gọi M là trung điểm AD, G là trọng tâm tam giác ABC

Do ABC cân tại A nên G và K cùng thuộc trung tuyến ứng với BC \(\Rightarrow GK\perp BC\)

E là trọng tâm ABD \(\Rightarrow\) DE đi qua trung điểm AB \(\Rightarrow\) DE là đường trung bình tam giác ABC (đi qua trung điểm của AB và AC)

\(\Rightarrow DE//BC\Rightarrow GK\perp DE\) (*)

K là tâm đường tròn ngoại tiếp, D là trung điểm AC \(\Rightarrow KD\perp AC\) (1)

G là trọng tâm ABC, E là trọng tâm ABD

\(\Rightarrow\left\{{}\begin{matrix}BG=\frac{2}{3}BD\\BE=\frac{2}{3}BM\end{matrix}\right.\) \(\Rightarrow EG//MD\) (Talet đảo) (2)

(1);(2) \(\Rightarrow KD\perp EG\) (**)

(*);(**) \(\Rightarrow\) G là trực tâm EDK \(\Rightarrow DG\perp EK\) hay \(BD\perp EK\)

\(\Rightarrow\) Viết được pt BD (qua Q và vuông góc EK)

Do D thuộc BD, gọi tọa độ D theo 1 ẩn

P thuộc AC \(\Rightarrow PD\perp KD\Rightarrow\overrightarrow{PD}.\overrightarrow{KD}=0\Rightarrow\) tìm được tọa độ D

Viết được pt AC (qua P và vuông góc BD)

Viết pt EG (qua E và song song AC) \(\Rightarrow\) tọa độ G là giao điểm EG và BD

\(\Rightarrow\) Phương trình GK \(\Rightarrow\) tọa đô A là giao GK và AC

\(\Rightarrow\)Tọa độ C (D là trung điểm AC)

Sau 2 tuần sửa được:

2/5+3/7=29/35(quãng đường)