Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BK = CH (cm câu b) mà BE = EK = BK/2 (E là trung điểm BK) ; FC = CH/2 (F là trung điểm HC) => BE = EK = FC
\(\text{ΔBME,ΔCMF}\) có BM = CM ; BE = CF (cmt) ; \(\widehat{MBE}=\widehat{MCF}\)= (2 góc slt của BK // CH)
\(\text{⇒ΔBME = ΔCMF (c.g.c)}\) => ME = MF (2 cạnh tương ứng) ; \(\widehat{\text{BME}}=\widehat{\text{CMF}}\)= (2 góc tương ứng)
mà \(\widehat{\text{BME}}+\widehat{\text{EMC}}\) = 180 0 (kề bù)
\(\text{⇒ }\widehat{\text{CMF}}+\widehat{\text{EMC}}\)= 180 0
=> E,M,F thẳng hàng
Mình cũng có thể suy ra MBE a MCF bằng nhau nhờ câu b phải không bạn Bùi Nguyễn Việt Anh?
a) Xét t/g CKM vuông tại K và t/g BHM vuông tại H có:
CM = BM (gt)
CMK = BMH ( đối đỉnh)
Do đó, t/g CKM = t/g BHM ( cạnh huyền - góc nhọn)
=> KM = HM (2 cạnh tương ứng)
=> M là trung điểm HK (đpcm)
b) Xét t/g CMH và t/g BMK có:
HM = KM (câu a)
CMH = BMK ( đối đỉnh)
CM = BM (gt)
Do đó, t/g CMH = t/g BMK (c.g.c)
=> CHM = BKM (2 góc tương ứng)
Mà CHM và BKM là 2 góc ở vị trí so le trong nên HC // BK (đpcm)
A B C F H E M K
d, cm tam giác EMK = tam giác FMH (c-g-c)
=> EM = MF => M là trđ của EF
Cm tam giác BEH = tam giác FHE (c-g-c) => BH // EF => EF _|_ AM
=> tam giác AEF cân tại A
không hiểu chỗ nào thì hỏi
a) Xét Δ B H M ; Δ C K M ΔBHM;ΔCKM có :
ˆ B H M = ˆ C K M ( = 90 o − g t )
BHM^=CKM^(=90o−gt)
B M = M C ( g t ) BM=MC(gt) ˆ H M B = ˆ K M C HMB^=KMC^ (đối đỉnh)
=> Δ B H M = Δ C K M ΔBHM=ΔCKM (cạnh huyền - góc nhọn)
=> ˆ H B M = ˆ K C M HBM^=KCM^ (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> BH // KC ( đ p c m ) BH // KC(đpcm)
Và từ Δ B H M = Δ C K M ΔBHM=ΔCKM (cmt)
=> B H = C K BH=CK (2 cạnh tương ứng)
b) Xét Δ H M C ; Δ K M B ΔHMC;ΔKMB có :
B M = M C ( g t )
BM=MC(gt) ˆ H M C = ˆ K M B HMC^=KMB^ (đối đỉnh)
H M = M K HM=MK (do Δ B H M = Δ C K M ΔBHM=ΔCKM -cmt)
=> Δ H M C ; Δ K M B ΔHMC;ΔKMB
=> Δ H M C = Δ K M B ΔHMC=ΔKMB (c.g.c)
=> ˆ H C M = ˆ K B M HCM^=KBM^ (2 góc tương ứng)
Mà : 2 góc này ở vị trí so le trong
=> BK // CH ( đ p c m ) BK // CH (đpcm)
Có : Δ H M C = Δ K M B ΔHMC=ΔKMB (cmt)
=> B K = C H BK=CH (2 cạnh tương ứng)
c) Ta có : { H F = F C B E = E K {HF=FCBE=EK (gt)
Mà : B K = H C ( c m t ) BK=HC(cmt)
=> H F = F C = B E = E K HF=FC=BE=EK
Xét Δ B E M ; Δ F C M ΔBEM;ΔFCM có :
B M = M C ( g t ) BM=MC(gt) ˆ M B E = ˆ M C F ( s l t )
MBE^=MCF^(slt) B E = F C ( c m t ) BE=FC(cmt)
=> Δ B E M = Δ F C M ( c . g . c ) ΔBEM=ΔFCM(c.g.c)
=> E M = F M EM=FM(2 cạnh tương ứng)
=> M Là trung điểm của EF Do đó : E, ,M, F thẳng hàng
Câu 1 (Bạn tự vẽ hình giùm)
a) Mình xin chỉnh lại đề một chút: \(\Delta ABD=\Delta ACD\)
\(\Delta ABD\)và \(\Delta ACD\)có: AB = AC (\(\Delta ABC\)cân tại A)
BD = DC (D là trung điểm của BC)
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\) (c. c. c) (đpcm)
b) Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BAD}=\widehat{DAC}\)(hai góc tương ứng) => AD là tia phân giác của \(\widehat{BAC}\)(đpcm)
c) Mình xin chỉnh lại đề một chút: AD \(\perp\)BC tại D
Ta có \(\Delta ABD=\Delta ACD\)(cm câu a) => \(\widehat{BDA}=\widehat{CDA}\)(hai góc tương ứng)
Mà \(\widehat{BDA}+\widehat{CDA}\)= 180o (kề bù)
=> \(\widehat{BDA}=\widehat{CDA}=\frac{180^o}{2}\)= 90o => AD \(\perp\)BC tại D (đpcm)