Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: |2x-1|<5
=>2x-1>-5 và 2x-1<5
=>2x>-4 và 2x<6
=>-2<x<3
mà x là số nguyên dương
nên \(x\in\left\{1;2\right\}\)
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
Đặt \(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2015k\\y=2016k\\z=2017k\end{matrix}\right.\)
\(\Rightarrow\left(x-z\right)^3\div\left[\left(x-y\right)^2\left(y-z\right)\right]\)
\(=\left(2015k-2017k\right)^3\div\left[\left(2015k-2016k\right)^2\left(2016k-2017k\right)\right]\)
\(=\left(-2k\right)^3\div\left[-k^2\left(-k\right)\right]\)
\(=-8k^3\div\left(-k\right)^3\)
\(=8\)
Vậy \(\left(x-z\right)^3\div\left[\left(x-y\right)^2\left(y-z\right)\right]=8\)
ta có x=9+y
thay x=9+y vào biểu thức B ta có:
B=\(\dfrac{7\left(9+y\right)-9}{6\left(9+y\right)+y}\)+\(\dfrac{7\left(9+y\right)+9}{8\left(9+y\right)-y}\)
B=\(\dfrac{63+7y-9}{54+6y+y}\)+\(\dfrac{63+7y+9}{72+8y-y}\)
B=\(\dfrac{54+7y}{54+7y}\)+\(\dfrac{72+7y}{72+7y}\)
B=1+1
B=2
Ta có: a=512.46=512.(22)6=512.212=(5.2)12=1012
(=1000000000000)
Vậy số chữ số của a là 12.
512.46=512.(22)6 (Lũy thừa của lũy thừa đó bn)
=512.22.6=512.212=(5.2)12=1012
=>1012=1000...000 có 12 số 0 và 1 số 1 nên số nay có 13 chữ số
Thanks!
Ta có: x và y là 2 đl tlt nên \(\dfrac {x1}{y1} \)=\(\dfrac{x2}{y2}\) .
Thay số: \(\dfrac {6}{y1} \)=\(\dfrac{-9}{y2}\)=\(\dfrac{6-(-9)}{y1-y2}\)=\(\dfrac{15}{10} \)=1,5
=>y1=\(\dfrac{6}{1,5} \)= 4; y2=\(\dfrac{-9}{1,5} \)= -6
Vậy y1+y2=4+(-6)=-2
Ta đánh giá phương trình ở đề bài:
Dễ thấy (x-3y)2, (y-1)2, (x+z)2 đều lớn hơn hoặc bằng 0 với mọi giá trị của biến. Do vậy tổng của chúng bằng 0 khi và chỉ khi:\(\left\{{}\begin{matrix}\left(x-3y\right)^2=0\\\left(y-1\right)^2=0\\\left(x+z\right)^2=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3y\\y=1\\x=-z\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3\\y=1\\z=-3\end{matrix}\right.\)
=>A=3x+2y+z=3.3+2.1-3=8
ta có:(x-3y)2>=0
(y+1)2>=0
(x+z)2>=0
=>\(\begin{matrix}\left(x-3y\right)^2=0&=>x-3y=0&=>x=3y&=>x=3&\\\left(y-1\right)^2=0&=>y-1=0&=>y=1&=>y=1&\\\left(x+z\right)^2=0&=>x+z=0&=>z=-x&=>z=-3&\end{matrix}\)
thay x,y,z vào biểu thức A ta có:
A=3.3+2.1+(-3)
A=3+2-3
A=2
\(\widehat{cAa}=\widehat{BAa}\) (đối đỉnh)
\(\widehat{BAa}+\widehat{cAa}=180^o\) (kề bù)
\(\widehat{BAa}+45^o=180^o\)
\(\widehat{BAa}+45^o=180^o\)
Vì a//b \(\Rightarrow\)....
bạn làm bài 3 lun được ko