Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Bài 30:
Ta có \(y=x^4-2mx^2\Rightarrow y'=4x^3-4mx\)
Để ĐTHS có 3 điểm cực trị thì \(y'=4x^3-4mx=0\) phải có ba nghiệm phân biệt
\(\Leftrightarrow x(x^2-m)=0\) có ba nghiệm phân biệt. Do đó \(m>0\)
Khi đó, gọi ba điểm cực trị lần lượt là:
\(A(0,0);B(\sqrt{m},-m^2);C(-\sqrt{m},-m^2)\)
Từ đây, ta viết được PTĐT $BC$ là: \(y=-m^2\)
Sử dụng công thức tính khoảng cách từ 1 điểm đến đường thẳng:
\(d(A,BC)=\frac{|m^2|}{\sqrt{1^2+0^2}}=m^2\)
\(BC=\sqrt{(\sqrt{m}--\sqrt{m})^2+(-m^2+m^2)^2}=2\sqrt{m}\)
\(\Rightarrow S_{ABC}=\frac{d(A,BC).BC}{2}=m^2\sqrt{m}<1\). Mà \(m>0\) nên
\(m^2\sqrt{m}<1\Leftrightarrow 0<\sqrt{m^5}<1\Leftrightarrow 0< m<1\).
Đáp án D.
Bài 31:
Đề bài sai rồi nhé, hàm thứ hai phải là \(y=x^3-3x^2-m+2\)
PT hoành độ giao điểm:
\(x^3-3x^2-m+2+mx=0\)
\(\Leftrightarrow (x-1)[x^2-2x+(m-2)]=0\)
PT trên có một nghiệm là $1$. Để hai đths cắt nhau tại ba điểm phân biệt thì PT \(x^2-2x+(m-2)=0(1)\) phải có hai nghiệm pb khác $1$
\(\Rightarrow \left\{\begin{matrix} 1-2-2+m\neq 0\\ \Delta'=3-m>0\end{matrix}\right.\Rightarrow m<3\)
Nếu $x_1,x_2$ là hai nghiệm của $(1)$ thì áp dụng định lý Viete ta có:
\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-2\end{matrix}\right.\)
Như vậy, độ dài các đoạn $AB,BC,AC$ nằm trong các giá trị:
\(\left\{\begin{matrix} |x_1-1|\sqrt{m^2+1}\\ |x_2-1|\sqrt{m^2+1}\\ |x_1-x_2|\sqrt{m^2+1}\end{matrix}\right.\)
Ta thấy \(x_1+x_2=2\Rightarrow x_1-1=1-x_2\Rightarrow |x_1-1|=|x_2-1|\)
Do đó \(|x_1-1|\sqrt{m^2+1}=|x_2-1|\sqrt{m^2+1}\), tức là luôn tồn tại hai đoạn thẳng nối hai giao điểm có độ dài bằng nhau (thỏa mãn đkđb) , với mọi $m$ nằm trong khoảng xác định, hay \(m<3\)
Đáp án D.
Lời giải:
Ta có:
\(y=-x^3+3x^2+5\Rightarrow y'=-3x^2+6x=0\Leftrightarrow \)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Do đó hai điểm cực trị là:\(A(0,5)\) và \(B(2,9)\)
Suy ra \(\left\{\begin{matrix} OA=5\\ OB=\sqrt{85}\\ AB=2\sqrt{5}\end{matrix}\right.\)
Sử dụng công thức Herong: Với \(a,b,c\) là độ dài ba cạnh tam giác, \(p\) là nửa chu vi thì:
\(S=\sqrt{p(p-a)(p-b)(p-c)}\)
Áp dụng vào bài toán:
\(S_{OAB}=5\)
Đáp án B
Bài 18:
Theo định lý Pitago:
\(SA=\sqrt{SB^2-AB^2}=2a\)
Do đó, \(V_{S.ABC}=\frac{1}{3}.SA.S_{ABC}=\frac{1}{3}.2a.\frac{a.5a}{2}=\frac{5a^3}{3}\)
Đáp án D.
Bài 19:
Vì
\(SA\perp (ABCD)\Rightarrow \angle (SB,(ABCD))=\angle (SB,AB)=\angle SBA=60^0\)
Suy ra \(\frac{SA}{AB}=\frac{SA}{a}=\tan SBA=\sqrt{3}\Rightarrow SA=\sqrt{3}a\)
\(\Rightarrow V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}\sqrt{3}a.a.3a=\sqrt{3}a^3\)
Đáp án B
3.
Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)
B đúng
4.
Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)
A đúng
1.
B sai (thiếu điều kiện \(f'\left(x\right)=0\) tại hữu hạn điểm)
11. \(I=\int\limits^2_1x\sqrt{x^2+1}dx\)
Đặt \(\sqrt{x^2+1}=t\Leftrightarrow x^2=t^2-1\Rightarrow xdx=tdt\) ; \(\left\{{}\begin{matrix}x=1\Rightarrow t=\sqrt{2}\\x=2\Rightarrow t=\sqrt{5}\end{matrix}\right.\)
\(I=\int\limits^{\sqrt{5}}_{\sqrt{2}}t.tdt=\int\limits^{\sqrt{5}}_{\sqrt{2}}t^2dt=\dfrac{1}{3}t^3|^{\sqrt{5}}_{\sqrt{2}}=\dfrac{1}{3}\left(5\sqrt{5}-2\sqrt{2}\right)\)
12. Đặt \(\sqrt[3]{8-4x}=t\Rightarrow x=\dfrac{8-t^3}{4}\Rightarrow dx=-\dfrac{3}{4}t^2dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=2\\x=2\Rightarrow t=0\end{matrix}\right.\)
\(I=\int\limits^0_2t.\left(-\dfrac{3}{4}t^2dt\right)=\dfrac{3}{4}\int\limits^2_0t^3dt=\dfrac{3}{16}t^4|^2_0=3\)
13. Đặt \(\sqrt{3-2x}=t\Rightarrow x=\dfrac{3-t^2}{2}\Rightarrow dx=-tdt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=\sqrt{3}\\x=1\Rightarrow t=1\end{matrix}\right.\)
\(I=\int\limits^1_{\sqrt{3}}\dfrac{-tdt}{t}=\int\limits^{\sqrt{3}}_1dt=t|^{\sqrt{3}}_1=\sqrt{3}-1\)
câu 30 y'=0 ta có 3 nghiệm x=0 và x=+-căn(m) vs x=+-căn(m)=>y=-m2 =>A(-căn(m);-m^2).B(căn(m);-m^2)=> kc AB=2 căn(m) tại x=0 y=0 =>O(0;0) vì hàm có 3 cực trị =>tam giác 0AB cân => m^2 là đường cao Soab=(2 căn(m)*m^2)/2 =căn(m)^3<1 gọi căn m là x => x^3-1<0 áp dụng hằng đt => x-1<0 => x<1 =>m<1