\(\pi\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

Y = cos A . cos B . cos C 

\(\frac{1}{2}\)[ cos (A+B) + cos (A-B) ] cos C

\(\frac{1}{2}\)[cos (\(\pi\)- C) + cos (A-B)] cos C

=\(\frac{1}{2}\)[-cos C +cos(A-B)] cos C

\(-\frac{1}{2}\)cos2C + \(\frac{1}{2}\)cos (A-B) cos C 

=> cos2C - cos (A-B) cos C +2y = 0

Tam giác = cos2 (A-B) -8y \(\ge\)0

=> Y\(\le\)\(\frac{1}{8}\)cos2 (A-B) 

=> cos2 (A-B) \(\le\)1 (A=B)

=> Y \(\le\)\(\frac{1}{8}\) cos2(A-B) \(\le\)\(\frac{1}{8}\).1 = \(\frac{1}{8}\)

cos C = \(-\frac{b}{2a}\)\(-\frac{c\text{os}\left(A-B\right)}{2}\)=\(\frac{1}{2}\)

C =\(\frac{\pi}{3}\); A=B=\(\frac{\pi}{3}\)

Y max = \(\frac{1}{8}\)

Vậy ....

7 tháng 8 2017

~ ~ ~ Áp dụng đẳng thức \(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\) ~ ~ ~

a)

\(\left(\sin\alpha+\cos\alpha\right)^2-2\sin\alpha\cos\alpha-1\)

\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\right)\)

\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)^2\)

= 0

b)

\(\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+1\)

\(=\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\)

\(=\left(\sin\alpha-\cos\alpha\right)^2+\left(\sin\alpha+\cos\alpha\right)^2\)

\(=2\left(\sin^2\alpha+\cos^2\alpha\right)\)

= 2

c)

\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2+2\)

\(=2\left(\sin^2\alpha+\cos^2\alpha\right)+2\)

= 4

d)

\(\sin^2\alpha\cot^2\alpha+\cos^2\alpha\tan^2\alpha\)

\(=\left(\sin\times\dfrac{\cos}{\sin}\right)^2+\left(\cos\times\dfrac{\sin}{\cos}\right)^2\)

= 1

10 tháng 8 2017

a) Ta có : sin\(^2\)12o=cos278o=> sin212o+sin278o=1.

tương tự => A=3

10 tháng 8 2017

b) tương tự câu (a) ta có: cos215o=sin275o ( do 15+75=90 nha bạn ) => cos215o+cos275o=1. Tương tự => B=0

17 tháng 8 2020

a)Tam giác ABD vuông tại D có BD = AB.cos B

Tam giác BCE vuông tại E có CE=BC.cos C

Tam giác CÀ vuông tại F có AF=CA.cos A

Suy ra : \(AF.BD.CE=AB.BC.CA.cosA.cosB.cosC\)

17 tháng 8 2020

b) Xét \(\Delta ABE\)và \(\Delta ACF\) có :

\(\widehat{AEB}=\widehat{AFC}\left(=90^o\right)\)

\(\widehat{BAE}=\widehat{CAF}\left(gt\right)\)

nên \(\Delta ABE\) đồng dạng \(\Delta ACF\)(gg)

\(\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)(1)

Lại có \(\widehat{FAE}=\widehat{CAB}\)(2)

Từ (1) và (2) suy ra \(\Delta AFE\)đồng dạng\(\Delta ACB\)(cgc)

\(\Rightarrow\frac{S_{AFE}}{S_{ACB}}=\frac{AE^2}{AB^2}=\frac{S_{AFE}}{144}\)(*)

\(\Delta ABE\)vuông tại E có\(\widehat{BAE}=60^0\Rightarrow\widehat{ABE}=30^o\Rightarrow\frac{AE}{AB}=\frac{1}{2}\Rightarrow\frac{AE^2}{AB^2}=\frac{1}{4}\)

Thay vào (*) ta có \(\frac{S_{AFE}}{144}=\frac{1}{4}\Rightarrow S_{AFE}=36\)