Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phương trình đường tròn mô tả ranh giới bên ngoài của vùng phủ sóng là: \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 9\)
b) Khoảng cách từ tâm I đến A là: \(IA = \sqrt {{{\left( { - 1 + 2} \right)}^2} + {{\left( {3 - 1} \right)}^2}} = \sqrt 5 \)
Do \(IA < 3\) nên điểm A nằm trong đường tròn ranh giới. Vậy nên người A có thể dịch vụ của trạm.
c) Khoảng cách từ tâm I đến B là: \(IB = \sqrt {{{\left( { - 3 + 2} \right)}^2} + {{\left( {4 - 1} \right)}^2}} = \sqrt {10} \)
Khoảng cách ngắn nhất theo đường chim bay để 1 người ở B di chuyển đến vùng phủ sóng là:
\(IB - R = \sqrt {10} - 3\left( {km} \right)\)
Để quả bóng có thể ném được qua lưới cao 2 m thì \(y = f\left( x \right) = - 0,03{x^2} + 0,4x + 1,5 > 2\)
\( \Rightarrow f\left( x \right) = - 0,03{x^2} + 0,4x - 0,5 > 0\)
Xét tam thức \(f\left( x \right) = - 0,03{x^2} + 0,4x - 0,5\) có \(\Delta = 0,1 > 0\), có hai nghiệm phân biệt là \({x_1} \simeq 1,4;{x_2} \simeq 11,9\) và có \(a = - 0,03 < 0\)
Ta có bảng xét dấu như sau
Vậy để quả bóng có thể ném được qua lưới cao 2 m, người ta phải đứng cách lưới từ 1,4 cho đến 11,9 mét
Phương trình hoành độ giao điểm:
`mx-3=x^2`
`<=>x^2-mx+3=0` (1)
(P) cắt (d) tại 2 điểm phân biệt `<=>` PT (1) có 2 nghiệm phân biệt.
`<=> \Delta >0`
`<=>m^2-3>0`
`<=> m<-\sqrt3 \vee m>\sqrt3`
Viet: `{(x_1+x_2=m),(x_1x_2=3):}`
`|x_1-x_2|=2`
`<=>(x_1-x_2)^2=4`
`<=> (x_1+x_2)^2-4x_1x_2=4`
`<=>m^2-4.3=4`
`<=>m= \pm 4` (TM)
Vậy....
a) Vẽ lại parabol mô phỏng mặt cắt trên như hình dưới
Ta có: \(OA = 1,BC = 2{y_B} = 6 \Rightarrow B\left( {1;3} \right)\)
Giả sử phương trình chính tắc của parabol có dạng \({y^2} = 2px\)
Thay tọa độ điểm B vào phương trình \({y^2} = 2px\) ta có: \({3^2} = 2p.1 \Rightarrow p = \frac{9}{2}\)
Vậy phương trình chính tắc của parabol mô phỏng mặt cắt trên là \({y^2} = 9x\)
b) Khoảng cách từ tâm đường ống đến đỉnh của parabol chính là độ dài từ đỉnh tới tiêu điểm của parabol
Từ phương trình chính tắc ta có tiêu điểm \(F\left( {\frac{9}{4};0} \right)\)
Vậy khoảng cách từ tâm đường ống đến đỉnh của parabol là \(\frac{9}{4}\) m
Gọi phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\)
Vì \(AB = 40cm\) và \(h = 30cm\) nên \(A\left( {30;20} \right)\)
Do \(A\left( {30;20} \right)\) thuộc parabol nên ta có: \({20^2} = 2p.30 \Rightarrow p = \frac{{20}}{3}\)
Vậy parabol có phương trình chính tắc là: \({y^2} = \frac{{40}}{3}x\)
a) Tung độ đỉnh của hàm số \(y = \frac{{ - 3}}{{1000}}{x^2} + x\) là:
\(\frac{{ - \Delta }}{{4a}} = \frac{{ - \left( {{1^2} - 4.\frac{{ - 3}}{{1000}}.0} \right)}}{{4.\frac{{ - 3}}{{1000}}}} = \frac{{250}}{3}\)
Vậy độ cao cực đại của vật là \(\frac{{250}}{3}(m)\)
b) Vật chạm đất khi:
\(y = 0 \Leftrightarrow \frac{{ - 3}}{{1000}}{x^2} + x = 0 \Leftrightarrow x = \frac{{1000}}{3}\)và x=0(loại)
Vậy khoảng cách từ điểm chạm mặt đất sau khi bay của vật đến gốc O là \(\frac{{1000}}{3}\left( m \right)\)
Ta có thiết diện mặt cắt qua trục của chiếc ăng-ten là:
Vậy ta có: A(2; 1/2) mà A ∈ prapol:
15 cm = 0,15 m
Tại vì gốc tọa độ đặt tại tim đường nên độ cao của lề đường so với tim đường là âm
Để tim đường cao hơn đường không quá 15 cm thì ta có bât phương trình sau:
\( - 0,006{x^2} \ge - 0,15 \Leftrightarrow 0,006{x^2} - 0,15 \ge 0\)
Xét tam thức bậc hai \(f\left( x \right) = 0,006{x^2} - 0,15\) có hai nghiệm phân biệt là \({x_1} = - 5;{x_2} = 5\) và \(a = 0,006 > 0\) nên \(f\left( x \right)\) dương khi x thuộc hai nửa khoảng \(\left( { - \infty ; - 5} \right];\left[ {5; + \infty } \right)\)
Vậy khi chiều rộng của đường lớn hơn 10 m thì tim đường cao hơn đường không quá 15 cm