Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)=\left(-2m-2\right)^2-4\left(m^2+3\right)\)
\(=\left(2m+2\right)^2-4\left(m^2+3\right)=4m^2+8m+4-4m^2-12=8m-8\)
Để phương trình có nghiệm \(8m-8>0\Leftrightarrow m< 1\)
\(8m-8=0\Leftrightarrow m=1\)
Theo Vi et ta có \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{2m+2}{1}=2m+2\\x_1x_1=\frac{c}{a}=m^2+3\end{cases}}\)
\(P=2m+2+m^2+3=m^2+2m+5\)
\(=m^2+2m+1+4=\left(m+1\right)^2+4\ge4\)
Dấu ''='' xảy ra <=> m = -1
Vậy GTNN P là 4 <=> m =-1
Để phương trình 1 có nghiệm \(=>\Delta\ge0\)
\(\Delta=4.\left(m+1\right)^2-4.\left(m^2+3\right)=4m^2+8m+4-4m^2-12=8m-8\ge0=>m\ge1\)
\(T=x^4+y^4+z^4\)
áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)
\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)
\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)
dấu "=" xảy rakhi và chỉ khi
\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)
vậy dấu "=" có xảy ra
\(< =>MIN:T=\frac{4}{3}\)
sửa dòng 3 dưới lên
\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)
Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)
\(x^2+6x+5=0\)
<=>\(x^2+x+5x+5=0\)
<=>\(x\left(x+1\right)+5\left(x+1\right)=0\)
<=>\(\left(x+1\right)\left(x+5\right)=0\hept{\begin{cases}x+1=0< =>x=-1\\x+5=0< =>x=-5\end{cases}}\)bấm máy thử nghiệm đc mà .Bài này lớp 8 mà đâu phải lớp 9
x^2+6x+5=0
<=> x^2+x+5x+5=0
<=>x(x+1)+5(x+1)=0
<=> (x+5)(x+1)=0
=> x+5=0 hoặc x+1=0 <=> x=-5 hoặc x=-1
Ta có : \(\Delta=\left(-5\right)^2-4.4m=25-16m\)
Để pt có 2 nghiệm phân biệt \(< =>25-16m>0\)
\(< =>m< \frac{25}{16}\)
Theo hệ thức vi ét ta có : \(\hept{x_1+x_2=5}\)
Thay vào pt ta có :
\(\sqrt{\left(4x_1+4x_2\right)+7x_1}+\sqrt{\left(4x_1+4x_2\right)+7x_2}=9\sqrt{3}\)
Binh phương 2 vế ta được
\(5.4+7x_1+7x_2+5.4=243\)
\(< =>7.5+40=243< =>75=243\)
<=> sai đề :)) hoặc giải ngu xD
\(x^2-2mx+m^2-m+4=0\)
a/ ( a = 1; b = -2m; c = m^2 - m + 4 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)
\(=4m^2-4m^2+4m-16\)
\(=4m-16\)
Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=S^2-2P-P\)
\(=S^2-3P\)
\(=\left(2m\right)^2-3\left(m^2-m+4\right)\)
\(=4m^2-3m^2+3m-12\)
\(=m^2+3m-12\)
\(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)
\(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)
Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)
a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
để pt có ng khi Δ > 0 & Δ=0
=> m> hoặc = 4
Để pt có no thì: \(\Delta'\ge0\Leftrightarrow m^2+2\ge0\) (đúng \(\forall m\))
theo viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x_1+x_2}{2}=m\\x_1x_2=-\left(\dfrac{x_1+x_2}{2}\right)^2-1\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{x_1+x_2}{2}\right)^2+1+x_1x_2=0\)
( m + 1 )x2 - 2mx + m - 2 = 0
ĐKXĐ : m khác -1
Phương trình vô nghiệm khi Δ < 0
=> ( -2m )2 - 4( m + 1 )( m - 2 ) < 0
<=> 4m2 - 4( m2 - m - 2 ) < 0
<=> 4m2 - 4m2 + 4m + 8 < 0
<=> 4m + 8 < 0
<=> m + 2 < 0 <=> m < 2
Kết hợp với ĐKXĐ => Với \(\hept{\begin{cases}m\ne-1\\m< 2\end{cases}}\)thì phương trình vô nghiệm