M N Q P

Chung minh QM vuong goc QP

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

a)

Xét △ABD và △AID có:

B=I=90 độ

BAD=IAD(AD là tia phân giác)

AD chung

➩△ABD = △AID(ch-gn)

➩AB=AI (2 cạnh tương ứng)

a: NP=5cm

b: Xét ΔNMQ vuông tại M và ΔNKQ vuông tại K có

NQ chung

góc MNQ=góc KNQ

Do đo: ΔMNQ=ΔKNQ

c: Xét ΔMQH vuông tại M và ΔKNP vuông tại K có

QM=QK

\(\widehat{MQH}=\widehat{KQP}\)

Do đo;s ΔMQH=ΔKNP

Suy ra: MH=KP

=>NH=NP

hay ΔNHP cân tại N

4 tháng 12 2016

a) góc ANH = AMH = NAM =90 độ

=> NAMH là hình chữ nhật

=> NM = AH ( tính chất 2 đường chéo hình chữu nhật)

2 tháng 3 2018

Ta có: góc \(\hept{\begin{cases}^{ABH+BAH=90^o}\\^{EAC+BAH=90^o}\end{cases}}\)=> góc ABH = góc EAC

Xét tam giác ABH và tam giác CAK có:

AB=AC ( tam giác ABC cân tại A)

góc H = góc K (=90o)

góc ABH = góc KAC (c.m.t)

=> tam giác ABH = tam giác AKC (cạnh huyền - góc nhọn)

=> AH = CK (cặp cạnh tương ứng)

Ta lại có:+> AM là đường cao của tam giác vuông cân ABC => AM cũng là đường trung tuyến

=> AM=BM=MC (trung tuyến ứng với cạnh huyền)

+> \(\hept{\begin{cases}MAH+MEA=90^o\\MCK+KEC=90^o\end{cases}}\)mà góc MEA = góc KEC (đối đỉnh ) => góc MAH = góc MCK

Xét tam giác MAH và tam giác MCK có:

AM = MC (c.m.t)

góc MAH = góc MCK (c.m.t)

AH=CK (c.m.t)

=> hai tam giác trên bằng nhau (c.g.c) => HM = MK (cặp cạnh tương ứng) (đpcm)

2 tháng 3 2018

ai lam nhanh minh k cho

9 tháng 12 2017

Hình vẽ sau nha bạn (à mà bn thông cảm nha đây là lần đầu tiên mk vè hình nên cái hình hới k chính xác nhưng mà bn cứ dựa vào đó nhé)

a)

Xét \(\Delta ABD\) và \(\Delta EBD\), có:

BA=BE ( gt )

\(\widehat{ABD}=\widehat{EBD}\) ( AD là tia phân giác của góc B)

BD: cạnh chung

Suy ra: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)

\(\Rightarrow\) \(\widehat{A}=\widehat{BED}=90^0\) ( 2 góc tương ứng)

Ta có: \(\widehat{BED}+\widehat{DEC}=180^0\) (kề bù)

hay \(90^0+\widehat{DEC}=180^0\)

\(\Rightarrow\) \(\widehat{DEC}=180^0-90^0=90^0\)

\(\Rightarrow\) \(DE\perp BC\)

b)

Ta có: \(\Delta ABD=\Delta EBD\left(cmt\right)\)

Suy ra: DA=DE ( hai cạnh tương ứng)

Xét \(\Delta DAF\) và \(\Delta DEC\) , có:

\(\widehat{FAD}=\widehat{ECD}=90^0\)

\(\widehat{ADF}=\widehat{EDC}\) (đđ)

DA=DE (cmt)

Suy ra:\(\Delta DAF=\Delta DEC\) (cạnh góc vuông - góc nhọn kề nó)

suy ra: DF=DC ( 2 cạnh tương ứng)

c)

Ta có: \(\widehat{FDM}=\widehat{BDE}\) (đđ)

\(\widehat{CDM}=\widehat{ADB}\) (đđ)

mà: \(\widehat{BDE}=\widehat{ADB}\left(\Delta ABD=\Delta EBD\right)\)

\(\Rightarrow\)\(\widehat{FDM}=\widehat{CDM}\)

Ta có: \(\Delta DAF=\Delta DEC\) (cmt)

Suy ra: DF=DC ( 2 cạnh tương ứng)

Xét \(\Delta FDM\) và \(\Delta CDM\),có:

DF=DC ( cmt )

\(\widehat{FDM}=\widehat{CDM}\left(cmt\right)\)

DM: cạnh chung

Suy ra: \(\Delta FDM=\Delta CDM\left(c-g-c\right)\)

Suy ra: \(\widehat{DMF}=\widehat{DMC}\) ( 2 góc tương ứng)

Ta lại có: \(\widehat{DMF}+\widehat{DMC}=180^0\)(kề bù)

Suy ra: \(\widehat{DMF}=\widehat{DMC}=\dfrac{180^0}{2}=90^0\)

Suy ra: \(BM\perp FC\) hay \(BD\perp FC\)
A B C E D F

2 tháng 2 2019

tu ve hinh : 

xet tamgiac AMB va tamgiac AMC co : goc BAM = goc CAM do AM la phan giac cua goc BAC (gt)

AB = AC va goc ABC = goc ACB do tamgiac ABC can tai A (gt)

=> tamgiac AMB = tamgiac AMC (c - g - c)           (1)

b, (1) => goc AMB = goc AMC 

goc AMB + goc AMC = 180 (ke bu)

=> goc AMB = 90 

=> AM | BC (dn)

2 tháng 2 2019

 MINH NHO CAC BAN GIUP MINH PHAN d MA