K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

a) Phân thức M xác định khi và chỉ khi :

+) \(2x-2\ne0\Leftrightarrow x\ne1\)

+) \(2x+2\ne0\Leftrightarrow x\ne-1\)

+) \(1-\frac{x-3}{x+1}\ne0\)

\(\Leftrightarrow x-3\ne x+1\)

\(\Leftrightarrow0x\ne4\left(\text{luôn đúng}\right)\)

Vậy \(x\ne\left\{1;-1\right\}\)

b) \(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)

\(M=\left(\frac{\left(x-2\right)\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}+\frac{3\left(2x+2\right)}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{x+1-x+3}{x+1}\right)\)

\(M=\left(\frac{2x^2-2x-4-2x^2-4x+6+6x+6}{\left(2x-2\right)\left(2x+2\right)}\right):\left(\frac{4}{x+1}\right)\)

\(M=\frac{8}{2\left(x-1\right)2\left(x+1\right)}\cdot\frac{x+1}{4}\)

\(M=\frac{8\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)\cdot4}\)

\(M=\frac{8\left(x+1\right)}{8\left(x+1\right)\left(x-1\right)}\)

\(M=\frac{1}{x-1}\)

9 tháng 12 2018

\(M=\left(\frac{x-2}{2x-2}-\frac{x+3}{2x+2}+\frac{3}{2x-2}\right):\left(1-\frac{x-3}{x+1}\right)\)

\(=\left(\frac{x+1}{2x-2}-\frac{x+3}{2x+2}\right):\left(\frac{4}{x+1}\right)=\left[\frac{\left(x+1\right)\left(2x+2\right)-\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]:\left(\frac{4}{x+1}\right)\)

\(=\left[\frac{2x^2+4x+2-2x^2+2x+6-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)

\(=\left[\frac{6x+8-6x+6}{4x^2-4}\right]:\left(\frac{4}{x+1}\right)\)

\(=\frac{14}{4x^2-4}:\left(\frac{4}{x+1}\right)=\frac{14x+14}{16x^2-16}=\frac{7x+7}{8x^2-8}\)

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

2 tháng 8 2020

\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(< =>B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\frac{x.x}{x\left(x-2\right)}\right)\)

\(< =>B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}+\frac{x^2}{x\left(x-2\right)}\right)\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}:\frac{x^2-4+x^2}{x\left(x-2\right)}\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}.\frac{x\left(x-2\right)}{2x^2-4}\)

\(< =>B=\frac{3x-4}{2x^2-4}\)

\(b,\)Với \(x=-2\)thì

 \(B=\frac{3\left(-2\right)-4}{2\left(-2\right)^2-4}=\frac{-6-4}{8-4}=-\frac{10}{4}=-\frac{5}{2}\)

2 tháng 8 2020

\(ĐKXĐ:x\ne2;x\ne0\)

a

\(B=\left[\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right]:\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(=\frac{x-4+2x}{x\left(x-2\right)}:\frac{\left(x+2\right)\left(x-2\right)-x^2}{x\left(x-2\right)}\)

\(=\frac{3x-4}{x^2-4-x^2}=-\frac{3x-4}{4}\)

b

\(B=-\frac{3x-4}{4}=-\frac{3\cdot\left(-2\right)-4}{4}=\frac{5}{2}\)

c

\(\left|B\right|-2x=5\Leftrightarrow\left|B\right|=5+2x\)

\(B=-\frac{3x-4}{4}\Leftrightarrow-\frac{3x-4}{4}\ge0\Leftrightarrow x\le\frac{4}{3}\)

\(B=\frac{3x-4}{4}\Leftrightarrow x>\frac{4}{3}\)

Xét các trường hợp của x thì ra nghiệm bạn nhé

d

\(\left(2-x\right)B=-\frac{\left(2-x\right)\left(3x-4\right)}{4}\)

Để ( 2 - x ).B đạt giá trị nhỏ nhất thì ( 2 - x ) ( 3x - 4 ) đạt giá trị lớn nhất

Casio sẽ giúp chúng ta phần này

e

Để B là số nguyên âm lớn nhất hay \(B=-1\Leftrightarrow-\frac{3x-4}{4}=-1\Leftrightarrow x=\frac{8}{3}\)

g

\(\left|B\right|+3< 2x-1\)

Làm hệt như câu c nhé :D 

10 tháng 7 2015

a)ĐKXĐ: x\(\ne\)1;x\(\ne\)-1

B=\(\frac{1}{4x-4}\)

b)

B=\(\frac{1}{8016}\)

c)

x=\(\frac{4007}{4008}\)

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

26 tháng 11 2017

a)  M = ( 2x + 3)(2x - 3) - 2(x + 5)2 - 2(x - 1)(x + 2) 

   = 4x2 - 9 - 2(x2 + 10x + 25) - 2(x2 + x - 2)

   = 4x2 - 9 - 2x2 - 20x - 50 - 2x2 - 2x + 4

   = -22x - 55 =  -11(2x + 5)

b) M = -11(2x + 5) = - 11(2.\(\frac{-7}{3}\)+ 5) = \(\frac{-11}{3}\)

b)  M = -11(2x + 5) = 0

\(\Rightarrow\)2x + 5 = 0

\(\Rightarrow\)x = \(\frac{-5}{2}\)

26 tháng 11 2017

Ta có: M = (2x+3)(2x-3) - 2(x+5)2 - 2(x-1)(x+2) \(=\left(2x\right)^2-3^2-2\left(x^2+10x+25\right)-\) \(2\left(x^2+x-2\right)\)

\(=4x^2-9-2x^2-20x-50-2x^2-2x+4\) =\(\left(4x^2-2x^2-2x^2\right)-\left(20x+2x\right)-\left(50+9-4\right)\) \(=-22x-55\)

b, Với x = \(-2\frac{1}{3}=\frac{-7}{3}\)

\(\Rightarrow M=-22.\frac{-7}{3}-55=\frac{154}{3}-55=\frac{-11}{3}\)

c, Để M = 0 => -22x - 55 = 0 \(\Rightarrow-22x=55\Rightarrow x=\frac{-55}{22}=\frac{-5}{2}\)

Vậy \(x=\frac{-5}{2}\)